west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Prediction model" 21 results
  • Mortaligy risk prediction models for acute type A aortic dissection: a systematic review

    ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.

    Release date:2021-12-21 02:23 Export PDF Favorites Scan
  • Construction of a prediction model and analysis of risk factors for seizures after stroke

    ObjectiveConstructing a prediction model for seizures after stroke, and exploring the risk factors that lead to seizures after stroke. MethodsA retrospective analysis was conducted on 1 741 patients with stroke admitted to People's Hospital of Zhongjiang from July 2020 to September 2022 who met the inclusion and exclusion criteria. These patients were followed up for one year after the occurrence of stroke to observe whether they experienced seizures. Patient data such as gender, age, diagnosis, National Institute of Health Stroke Scale (NIHSS) score, Activity of daily living (ADL) score, laboratory tests, and imaging examination data were recorded. Taking the occurrence of seizures as the outcome, an analysis was conducted on the above data. The Least absolute shrinkage and selection operator (LASSO) regression analysis was used to screen predictive variables, and multivariate Logistic regression analysis was performed. Subsequently, the data were randomly divided into a training set and a validation set in a 7:3 ratio. Construct prediction model, calculate the C-index, draw nomogram, calibration plot, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) to evaluate the model's performance and clinical application value. ResultsThrough LASSO regression, nine non-zero coefficient predictive variables were identified: NIHSS score, homocysteine (Hcy), aspartate aminotransferase (AST), platelet count, hyperuricemia, hyponatremia, frontal lobe lesions, temporal lobe lesions, and pons lesions. Multivariate logistic regression analysis revealed that NIHSS score, Hcy, hyperuricemia, hyponatremia, and pons lesions were positively correlated with seizures after stroke, while AST and platelet count were negatively correlated with seizures after stroke. A nomogram for predicting seizures after stroke was established. The C-index of the training set and validation set were 0.854 [95%CI (0.841, 0.947)] and 0.838 [95%CI (0.800, 0.988)], respectively. The areas under the ROC curves were 0.842 [95%CI (0.777, 0.899)] and 0.829 [95%CI (0.694, 0.936)] respectively. Conclusion These nine variables can be used to predict seizures after stroke, and they provide new insights into its risk factors.

    Release date:2024-07-03 08:46 Export PDF Favorites Scan
  • Prediction models of small for gestational age based on machine learning: a systematic review

    Objective To systematically review prediction models of small for gestational age (SGA) based on machine learning and provide references for the construction and optimization of such a prediction model. Methods The PubMed, EMbase, Web of Science, CBM, WanFang Data, VIP and CNKI databases were electronically searched to collect studies on SGA prediction models from database inception to August 10, 2022. Two researchers independently screened the literature, extracted data, evaluated the risk of bias of the included studies, and conducted a systematic review. Results A total of 14 studies, comprising 40 prediction models constructed using 19 methods, such as logical regression and random forest, were included. The results of the risk of bias assessment from 13 studies were high; the area under the curve of the prediction models ranged from 0.561 to 0.953. Conclusion The overall risk of bias in the prediction models for SGA was high, and the predictive performance was average. Models built using extreme gradient boosting (XGBoost) demonstrated the best predictive performance across different studies. The stacking method can improve predictive performance by integrating different models. Finally, maternal blood pressure, fetal abdominal circumference, head circumference, and estimated fetal weight were important predictors of SGA.

    Release date:2023-03-16 01:05 Export PDF Favorites Scan
  • Construction and validation of the associated depression risk prediction model in patients with type Ⅱ diabetes mellitus

    ObjectiveTo explore the risk factors for accompanying depression in patients with community type Ⅱ diabetes and to construct their risk prediction model. MethodsA total of 269 patients with type Ⅱ diabetes accompanied with depression and 217 patients with simple type Ⅱ diabetes from three community health service centers in two streets of Pingshan District, Shenzhen from October 2021 to April 2022 were included. The risk factors were analyzed and screened out, and a logistic regression risk prediction model was constructed. The goodness of fit and prediction ability of the model were tested by the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve. Finally, the model was verified. ResultsLogistic regression analysis showed that smoking, diabetes complications, physical function, psychological dimension, medical coping for face, and medical coping for avoidance were independent risk factors for depressive disorder in patients with type Ⅱ diabetes. Modeling group Hosmer-Lemeshow test P=0.345, the area under the ROC curve was 0.987, sensitivity was 95.2% and specificity was 98.6%. The area under the ROC curve was 0.945, sensitivity was 89.8%, specificity was 84.8%, and accuracy was 86.8%, showing the model predictive value. ConclusionThe risk prediction model of type Ⅱ diabetes patients with depressive disorder constructed in this study has good predictive and discriminating ability.

    Release date:2023-09-15 03:49 Export PDF Favorites Scan
  • Development of a prediction model of absolute risk for breast cancer

    ObjectivesTo explore the construction method of prediction model of absolute risk for breast cancer and provide personalized breast cancer management strategies based on the results.MethodsA case-control design was conducted with 2 747 individuals diagnosed as primary breast cancer by pathology in West China Hospital of Sichuan University from 2000 to 2017 and 6 307 healthy controls from Breast Cancer Screening Cohort in Sichuan Women and Children Center and Chengdu Shuangliu District Maternal and Child Health Hospital. Standardized questionnaires and information management systems in hospital were used to collect information. Decision trees, logistic regression, the formula in Gail model and registration data in China were used to estimate the probability of 5-year risk of breast cancer. Eventually a ROC (receiver operating characteristics) curve was drawn to identify optimal cut-off value, and the power was evaluated.ResultsThe decision tree exported 4 variables, which were urban or rural sources, number of live birth, age and age at menarche. The median 5-year risk and interquartile range of the controls was 0.027% and 0.137%, while the median 5-year risk and interquartile range of the cases was 0.219% and 0.256%. The ROC curve showed the cut-off value was 0.100%. Through verification, the sensitivity was 0.79, the specificity was 0.73, the accuracy was 0.75, and the AUC (area under the curve) was 0.79.ConclusionsThe methods used in our study based on 9 054 female individuals in Sichuan province could be used to predict the 5-year risk for breast cancer. Predictor variables include urban or rural sources, number of live birth, age, and age at menarche. If the 5-year risk is more than 0.100%, the person will be judged as a high risk individual.

    Release date:2020-01-14 05:25 Export PDF Favorites Scan
  • Construction and validation of a nomogram prediction model for the risk of pregnant women's fear of childbirth

    ObjectiveTo construct and verify the nomogram prediction model of pregnant women's fear of childbirth. MethodsA convenient sampling method was used to select 675 pregnant women in tertiary hospital in Tangshan City, Hebei Province from July to September 2022 as the modeling group, and 290 pregnant women in secondary hospital in Tangshan City from October to December 2022 as the verification group. The risk factors were determined by logistic regression analysis, and the nomogram was drawn by R 4.1.2 software. ResultsSix predictors were entered into the model: prenatal education, education level, depression, pregnancy complications, anxiety and preference for delivery mode. The areas under the ROC curves of the modeling group and the verification group were 0.834 and 0.806, respectively. The optimal critical values were 0.113 and 0.200, respectively, with sensitivities of 67.2% and 77.1%, the specificities were 87.3% and 74.0%, and the Jordan indices were 0.545 and 0.511, respectively. The calibration charts of the modeling group and the verification group showed that the coincidence degree between the actual curve and the ideal curve was good. The results of Hosmer-Lemeshow goodness of fit test were χ2=6.541 (P=0.685) and χ2=5.797 (P=0.760), and Brier scores were 0.096 and 0.117, respectively. DCA in modeling group and verification group showed that when the threshold probability of fear of childbirth were 0.00 to 0.70 and 0.00 to 0.70, it had clinical practical value. ConclusionThe nomogram model has good discrimination, calibration and clinical applicability, which can effectively predict the risk of pregnant women's fear of childbirth and provide references for early clinical identification of high-risk pregnant women and targeted intervention.

    Release date:2024-01-30 11:15 Export PDF Favorites Scan
  • Predictive model for the risk of knee osteoarthritis: a systematic review

    ObjectiveTo systematically evaluate the risk prediction model of knee osteoarthritis (KOA). MethodsThe CNKI, WanFang Data, VIP, PubMed, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant studies on KOA’s risk prediction model from inception to April, 2024. After study screening and data extraction by two independent researchers, the PROBAST bias risk assessment tool was used to evaluate the bias risk and applicability of the risk prediction model. ResultsA total of 12 studies involving 21 risk prediction models for KOA were included. The number of predictors ranged from 3 to 12, and the most common predictors were age, sex, and BMI. The range of modeling AUC included in the model was 0.554-0.948, and the range of testing AUC was 0.6-0.94. The overall predictive performance of the models was mediocre and the risk of overall bias was high, and more than half of the models were not externally verified. ConclusionAt present, the overall quality and applicability of the KOA morbidity risk prediction model still have great room for improvement. Future modeling should follow the CHARMS and PROBAST to reduce the risk of bias, explore the combination of multiple modeling methods, and strengthen the external verification of the model.

    Release date:2024-10-16 11:24 Export PDF Favorites Scan
  • Risk prediction models for gestational diabetes mellitus: a systematic review

    ObjectiveTo systematically review the research status of risk prediction models for gestational diabetes mellitus (GDM). MethodsThe CNKI, WanFang Data, VIP, CBM, PubMed, JBI EBP, Ovid MEDLINE, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant literature on risk prediction models for GDM from inception to October 2022. Two researchers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, and then qualitative description was performed. ResultsA total of 19 studies were included, involving 19 risk prediction models. The evaluation results showed that, in terms of the risk of bias, 18 studies were high risk, and 1 study was unclear. In terms of applicability, 14 studies were high risk, 2 studies were low risk, and 3 studies were unclear. The area under the receiver operating characteristic curve of the included models was 0.69 to 0.88. The most common predictors included age, weight, pre-pregnancy BMI, history of diabetes, family history of diabetes, and race. ConclusionThe overall performance of the risk prediction model for gestational diabetes mellitus is good, but the risk of bias of the model is high, and the clinical applicability of the model needs to be further verified.

    Release date:2023-12-16 08:39 Export PDF Favorites Scan
  • The level of skin advanced glycation end products in diabetic retinopathy patients and its predictive value

    Objective To observe the correlation between the level of advanced glycosylation end products (AGE) in skin and diabetic retinopathy (DR), and establish and preliminatively verify the nomogramolumbaric model for predicting the risk of DR. MethodsA clinical case-control study. A total of 346 patients with type 2 diabetes mellitus (T2DM) who were admitted to the Department of Endocrinology and Ophthalmology of the First Affiliated Hospital of Zhengzhou University from January 2023 to June 2024 were included in the study. Among them, 198 were males and 148 were females. The mean age was (54.77±10.92). According to whether the patients were accompanied by DR, the patients were divided into the non-DR group (NDR group) and the DR group (DR group), 174 and 172 cases, respectively. All patients underwent skin AGE detection using a noninvasive diabetes detector. Diabetes duration, hemoglobin A1c (HbA1c), fasting plasma glucose, Urea, creatinine (Crea), uric acid, total cholesterol, triglyceride, estimated glomerular filtration rate (eGFR), urinary albumin concentration (UALB), and body mass index (BMI) were collected in detail. Univariate analysis and multivariate logistic regression analysis were used to determine the independent risk factors for T2DM concurrent DR, and to construct a nomogram prediction model for DR risk. Receiver operating characteristic curve (ROC curve), calibration curve and decision curve (DCA) were used to evaluate the model. ResultsHypertension prevalence rate (χ2=3.892), Diabetes duration (Z=−7.708), BMI (Z=−2.627), HbA1c (Z=−4.484), Urea (Z=−4.620), Crea (Z=−3.526), UALB (Z=−6.999), AGE (Z=−8.097) in DR group were significantly higher than those in NDR group, with statistical significance (P<0.05); eGFR was lower than that in NDR group, the difference was statistically significant (Z=−6.061, P<0.05). Logistic regression analysis showed that AGE, diabetes duration, HbA1c, UALB and eGFR were independent risk factors for DR (P<0.05). Based on the results of multi-factor regression analysis, a nomogram prediction model was constructed. The area under ROC curve of the model was 0.843, 95% confidence interval was 0.802-0.884, sensitivity and specificity were 79.1% and 75.9%, respectively. The calibration curve was basically consistent with the ideal curve. The results of DCA analysis showed that when the model predicted the risk threshold of patients with DR between 0.17 and 0.99, the clinical net benefit provided by the nomogram model was>0. ConclusionsSkin AGE level is an independent risk factor for DR. The nomogram prediction model based on AGE, diabetes duration, HbA1c, eGFR and UALB can accurately predict the risk of DR, and has good clinical practicability.

    Release date:2025-07-17 09:24 Export PDF Favorites Scan
  • Construction and validation of prediction model for diabetic distal symmetric polyneuropathy based on neural network

    ObjectiveTo construct a prediction model of diabetics distal symmetric polyneuropathy (DSPN) based on neural network algorithm and the characteristic data of traditional Chinese medicine and Western medicine. MethodsFrom the inpatients with diabetes in the First Affiliated Hospital of Anhui University of Chinese Medicine from 2017 to 2022, 4 071 cases with complete data were selected. The early warning model of DSPN was established by using neural network, and 49 indicators including general epidemiological data, laboratory examination, signs and symptoms of traditional Chinese medicine were included to analyze the potential risk factors of DSPN, and the weight values of variable features were sorted. Validation was performed using ten-fold crossover, and the model was measured by accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC value. ResultsThe mean duration of diabetes in the DSPN group was about 4 years longer than that in the non-DSPN group (P<0.001). Compared with non-DSPN patients, DSPN patients had a significantly higher proportion of Chinese medicine symptoms and signs such as numbness of limb, limb pain, dizziness and palpitations, fatigue, thirst with desire to drink, dry mouth and throat, blurred vision, frequent urination, slow reaction, dull complexion, purple tongue, thready pulse and hesitant pulse (P<0.001). In this study, the DSPN neural network prediction model was established by integrating traditional Chinese and Western medicine feature data. The AUC of the model was 0.945 3, the accuracy was 87.68%, the sensitivity was 73.9%, the specificity was 92.7%, the positive predictive value was 78.7%, and the negative predictive value was 90.72%. ConclusionThe fusion of Chinese and Western medicine characteristic data has great clinical value for early diagnosis, and the established model has high accuracy and diagnostic efficacy, which can provide practical tools for DSPN screening and diagnosis in diabetic population.

    Release date:2024-03-13 08:50 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content