OBJECTIVE: To investigate the protective effect of tumor necrosis factor-alpha(TNF-alpha) on spinal motor neurons after peripheral nerve injury. METHODS: Twenty Wistar rats were divided into two groups, the right sciatic nerves of 20 Wistar rats were transected, the proximal stumps were inserted into a single blind silicone tube. 16 microliters of normal saline(NS) and TNF-alpha(30 U/ml) were injected into the silicone tubes. After 2 weeks, the 4th, 5th lumbar spinal cord were taken for examination. Enzyme histochemical technique and image analysis were used to show acetylcholinesterase(AChE) and nitric oxide synthase(NOS) activity of spinal motor neurons. RESULTS: The number of AChE and NOS staining neurons were 8.65 +/- 1.98 and 5.92 +/- 1.36 in the experimental group and 6.37 +/- 1.42 and 8.67 +/- 1.45 in the control group respectively, there were significant difference between the two groups(P lt; 0.01). CONCLUSION: It suggests that TNF-alpha has protective effect on motor neurons after peripheral nerve injury.
OBJECTIVE: To observe the functional rehabilitation of injured peripheral nerve with electric acupuncture. METHODS: Sciatic nerve injury model was established by transection of left sciatic nerve in 60 Wistar rats, which were randomly divided into two groups. The experimental group was treated with electroacupuncture, no treatment in the control group. Change of nerve electrophysiological, power of muscle and sciatic functional index (SFI) were observed. RESULTS: Nerve muscle-action potential (MAP) and motor nerve conduction velocity (MNCV) in the experimental group were better than that of the control group (P lt; 0.01). The single muscle twitch and tetanization of gastrocnemius muscle were higher in the experimental group too (P lt; 0.05). SFI were significantly higher in the experimental group (P lt; 0.05). CONCLUSION: Electric acupuncture therapy can improve functional rehabilitation of injured peripheral nerve.
OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.
To observe the change of morphology and neuropeptide in the spinal neurons in order to clarify the functional state after injury of peripheral nerves is especially in the late stage. Sciatic nerves were cut with their proximal segments in the preparation of a model of peripheral nerve injury. Combination of horseradish peroxidase retrograde tracing immunohistochemistry and computer image analysis the changes in the morphometry of the perikarya of ventral horn neurons of the spinal cord, the quantitative changes of substance P (SP). Calcitonin gene-related peptide (CGRP) in dorsal horn and CGRP and choline acetyransferase (CHAT) in ventral horn of the spinal cord were examed. The results showd: (1) At the 3rd week after injury, swollen perikarya of the ventral horn neurons were observed, subseauently the swelling of perikarya was decreased tile the 6th week the neurons recovered to their normal size. At the 12th week the neurons were generally stable in their size, shortening of the dendrites was seen in 27% of the neurons. (2) The dendrites of the neurons progressively contracted till at the 12th week 53% of them were degenerated. The results of the 24th week were similar to the that at the 12th week. (3) CGRP in the ventral horn of the spinal cord was elevated to the highest point after 1 week of injury, that lasting for 4 weeks and 8 weeks later, the lever of CGRP returned to normal. From 20th to 24th week, there was no obvious changes of CHAT in the ventral horn of the spinal cord during observation. (4) SP went to the lowest point in the dorsal horn during 2-6 weeks, then recovered slowly, and beiny normal again after 16 weeks, however, CGRP was changed slightly. The results indicated that although a series of degenerating changes occurred in the neurons of the spinal cord during the late peripheral nerve injury, but the functional activity of the central meurons still was maintained at a certain level.
Objective To explore effects of several immunosuppressants on cytokine expressions after repair for a sciatic nerve injury in a rat model. Methods The sciatic nerves of 42 rats were cut and suturedend to end. After operation, the rats were divided into 6 groups. Group A(n=9) was served as a control with no medicines given. Group B (n=9) was given methylprednisolone 20 mg/(kg·d) for 2 days. Groups C(n=9) and D(n=3) were given FK506 1 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. Groups E and F were given CsA 2 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. The sciaticnerves were sampled at 1, 2 and 4 weeks postoperatively. And immuneohistochemistry stainings of interleukin 1β(IL-1β), tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and macrophage migration inhibitory factor(MIF) were performed. The staining results were compared and analyzed. Results The expression peaks of IL-1β and IFN-γ were found at the 1st week postoperatively in Group A. Then, the expression decreased rapidly at the 2nd week and disappeared at the 4th week. As for TNF-α and MIF, they were only found to have a low expression until the 1st week in Group A. In groups C-F, the expression peaks of IL-1β, TNF-α and IFN-γ were found at the 2nd week, while the expression peak of MIF was still at the 1st week, and the expression of all the cytokines extended to the 4th week. The expressions of these cytokines in Group B were just between the expression levels of Group A and Groups C-F. Conclusion Immunosuppressants can delay the expression peaks and significantly extend the expression time of IL-1β, TNF-α, IFN-γ and MIF after repair for a sciatic nerve injury in a rat model.
Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.
ObjectiveTo study the expressions of microRNA-221 (miR-221) and the protein of phosphatase and tension protein homologue (PTEN) in the proximal and distal stumps after sciatic nerve injury in rats and their correlation with the repair of peripheral nerve injury, so as to provide a new target for clinical diagnosis of peripheral nerve injury.MethodsNinety-six male Sprague-Dawley rats of SPF grade were selected to establish sciatic nerve injury models. Twenty-four rats were sacrificed at 0 (immediately after operation), 1, 4, and 7 days after operation. The proximal and distal sciatic nerve fragments were taken under aseptic conditions. The expression of miR-221 was detected by real-time fluorescent quantitative PCR, and the expression of PTEN protein was detected by Western blot and immunofluorescent staining. The relationship between miR-221 and PTEN was verified by dual-luciferase reporter gene. At the same time, the ultrastructure of nerve stump was observed by transmission electron microscopy.ResultsThe results of real-time fluorescent quantitative PCR, Western blot, and immunofluorescence staining showed that the relative expression of miR-221 in the proximal and distal stumps increased gradually with time, and the relative expression of PTEN protein decreased gradually, and the differences between different time points after operation were significant (P<0.05). At 1, 4, and 7 days after operation, the relative expression of miR-221 in proximal stump was significantly higher than that in distal stump, and the relative expression of PTEN protein in proximal stump was significantly lower than that in distal stump (P<0.05). Dual-luciferase reporter gene suggested that PTEN was the target for miR-221. Transmission electron microscopy observation showed that the normal morphological structure was observed at 0 day after operation, and the proliferation of Schwann cells and degeneration of axons and myelin sheaths gradually increased with time. There was no significant difference between proximal and distal stumps at 1 day after operation. At 4 and 7 days, Schwann cells proliferated more in proximal stump than in distal stump, and the degeneration of axons and myelin sheaths was less.ConclusionAfter sciatic nerve injury in rats, the up-regulation of the miR-221 expression targets the down-regulation of PTEN expression, which results in the difference of expression levels of miR-221 and PTEN in proximal and distal stumps. This phenomenon may play a role in promoting nerve repair after peripheral nerve injury.
OBJECTIVE To investigate the effect of the emergent repair of peripheral nerve injury of the wrist. METHODS From July 1993 to December 1997, 17 cases were admitted, which 21 injured peripheral nerves were repaired emergently. Among them, there were 11 cases of median nerve injury, 2 cases of ulnar nerve injury and 4 cases of median and ulnar nerve injury. All the nerves were ruptured completely except one which was partially ruptured. The emergent operation was taken and the injured nerves were repaired by microsurgical technique. RESULTS Followed up 6 to 18 months after operation, 95.25% injured nerves had good outcome. CONCLUSION Because of the specific structure of the wrist, nerve injury at this part need to be repaired emergently. It can enhance the regeneration of the injured nerve, preserve the function of the intrinsic muscle of hand, and decrease the local adhesion.
ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
Objective To study the effect of olfactory ensheathingcells(OECs) transplantation on protecting spinal cord and neurons after peripheral nerve injury. Methods Fifty-five SD rats were randomly divided into blank group (n=5), experimental group (n=25) and control group (n=25). The right sciatic nerves of all the rats were transected. The proximal end was embedded in muscle and treated with OECs (experimental group) and DMEM (control group). No treatment was given to the blank group. The rats were sacrificed 1, 2, 3, 7, and 14 days after the transplantation, the related neurons were observed with histological and TUNEL methods. Results After sciatic nerves were transected, death of neurons occurred in spinal cord and ganglion. One, 2, 3 days after treatment, the neuron survival rate in experimental group was 98.4%±6.5%,97.6%±6.5%,95.2%±6.7% respectively. The neuron survival rate in control group was 97.8%±6.7%,97.4%±6.4%,94.3%±6.8% 1, 2, and 3 days after treatment respectively. There was no significant difference between experimental group and control group. Seven and 14 days after treatment, the neuron survival rate in experimental group was 92.4%±8.9%,87.7%±9.4% respectively. The neuron survival rate in control group was 87.4%±8.6%,83.4%±8.5% 7 and 14 days after treatment respectively. There was significant difference between experimental group and control group. On 1st and 2nd day, no apoptosis was seen in spinal cord anterior horn of the rats in both experimental group and control group. On 3rd, 7th, and 14th day, the apoptosis index of spinal cord anterior horn motoneuron in experimental rats were lower(1.2±0.8,1.4±0.6,4.1±1.3) than that in the control group(2.1±1.1,3.1±1.1,6.1±1.8)(Plt;0.05). One, 2, and 3 days after the operation, no ganglion neurons apoptosis was observed in all rats. On 7th day the apoptosis index of ganglion neurons in experimental group(2.10±0.32)were lower than thatin control group (4.40±0.56)(Plt;0.05). On 14th day there was no significant difference in the apoptosis index of ganglion neurons between experimental group (4.30±1.80)and control group(6.70±2.50)(P<0.05). Conclusion Apoptosis of neurons occur after peripheral nerve injury in spinal cord and ganglion. OECs transplantation is effective in preventing apoptosis.