west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Osteoblasts" 27 results
  • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS IN REPAIRING BONE DEFECTS

    Abstract An experiment was carried out to investigate the possibility of the establishment of an osteoblasts bank which could supply osteoblasts in repairing bone defect. Osteoblasts were isolated from thetibial periosteum of eight New-Zealand rabbits and cultured in votro. A bone defect, 1.5cm in length was made in both radii of each of the 8 rabbits. The cultivated osteoblasts, gelfoam as a carrier were randomly implanted into the defects of the radii of rabbits. Accordingly, the contralateral radial defects wereimplanted with gelfoam absorbed with the Hanks solution as control. The healing of bone defects was evaluated by roentgenographic examination at 2, 4, 8 and 12 weeks after operation, respectively. It was shown that the implanted cells had osteogenetic capability and could be possible to promote healing of the bone defects. It was suggested that further study needed to be carried out in this field.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • ADVANCE IN DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO OSTEOBLASTS IN VITRO

    Objective To review the progress, methods and obstacles in the differentiation of embryonic stem cells(ESCs) into osteoblasts in vitro. Methods The recent literature concerned with the differentiation of ESCs into the osteoblasts was extensively reviewed and briefly summarized. Results ESCs was a good tool for derivation of obsteoblasts.Conclusion The study on the induction of ESCsinto the osteogenic lineage provides a model for analyzing the molecular processes of osteoblasts development in vivo and establishes the foundation for the use of ESCs in skeletal tissue repair. 

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • STUDY ON DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO OSTEOBLAST IN VITRO INDUCING BY 1,25 (OH)2VD3

    Objective To investigate the effect of 1,25(OH)2VD3 on differentiation of embryonic stem cells (ESCs) into osteoblasts. Methods Osteoblasts were isolated and cultured from calvarium of 2-day-old Kunming white mice, embryoid bodies (EBs) were prepared with modified zur Nieden method. EBs were divided into 4 groups according to different mediums: group A, as the control group, in which EBs medium contained no leukemia inhibitory factor; group B, in which EBs medium contained supplements of Vitamin C (VC, 50 μg/mL) and β-glycerophosphate (β-GP, 50 mmol/L); group C, inwhich EBs medium was the same as that of group B and 5 × 104 osteoblasts of 3rd passage were seeded into each well; group D, in which the medium contained supplements of VC (50 μg/mL), β-GP (50 mmol/L) and 1,25(OH)2VD(4 × 10-9 mol/L), and 5 × 104 osteoblasts of 3rd passage were seeded into each well. The ALP activity was determined by ALP reagent kit every 5 days. The RQ-PCR was performed to measure the mRNA expressions of osteocalcin (OCN). Al izarin red S staining was performed to count the bone nodules. Results The expression of ALP witnessed no obvious change in each group within 5 days after adherence of EBs, but increased gradually after 5 days. The expression of ALP in group D reached the peak at 20 days. Red nodules with clear outl ine and different sizes were evident by microscope. Al izarin red S staining testified the number of bone noudles in groups A, B, C and D was 20 ± 8, 18 ± 5, 31 ± 1 and 50 ± 1, respectively, indicating significant differences between groups C, D and groups A, B (P lt; 0.05), no significant difference between group A and group B (P gt; 0.05), and a significant difference between group C and group D (P lt; 0.05). The result of RQ-PCR showed that the mRNA expressions of OCN in groups A, B, C and D was 10.18 ± 1.17, 20.29 ± 1.03, 18.84 ± 4.07 and 32.15 ± 5.23, respectively, indicating significant differences between groups C, D and groups A, B (P lt; 0.05), no significant difference between group A and group B (P gt; 0.05), and a significant difference between group C and group D (P lt; 0.05). Conclusion The combined action of 1,25(OH)2VD(4 × 10-9 mol/L), VC, and β-GP can effectively promote the differentiation of the ESCs-derived osteoblasts.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS COCULTURE WITH FREEZE-DRIED DEMINERALIZED BONE MATRIX

    OBJECTIVE To investigate the feasibility of freeze-dried demineralized bone matrix (FDBM) as scaffold material in bone tissue engineering. METHODS Osteoblasts which were isolated from cranial periosteum of New Zealand rabbits were cultured as the seeding cells, then the cells were cocultured with heterogenous FDBM in vitro. The cell-material complex was observed under phase microscope, light microscope and electronic scanning microscope in order to evaluate the interaction between cells and FDBM. RESULTS Eight hours after coculture, the osteoblasts adhered to FDBM scaffolds. Seven days later, the osteoblasts differentiated and proliferated in FDBM network. Extracellular matrix was secreted and calcium nodes were formed among osteoblasts. CONCLUSION FDBM is a good scaffold material for the bone tissue engineering.

    Release date: Export PDF Favorites Scan
  • CELLULAR SOCIOLOGICAL CHARACTERISTICS OF OSTEOBLASTS

    There is a great hope to treat long bone defects with bioactive artificial bone constructed by osteoblasts and biomaterials, in which the key point is to provide an optimum environment for the normal function of osteoblasts. The cellular sociological characteristics of osteoblasts were summarized and it was suggested that the ideal bioactive artificial bone should be composed of inorganic and organic materials together with cellular components such as osteoblasts and vascular endothelial cells, and combined with control release of growth factors, following its implantation it could be vascularized very soon and merged with the host bone by bony consolidation.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • INDUCED DIFFERENTIATION OF ECTOMESENCHYMAL STEM CELLS OF HUMAN EMBRYOFACIAL PROCESS INTO OSTEOBLAST IN VITRO

    Objective To investigate the possibility of ectomesenchymal stem cell of human embryo facial process in differentiating into osteoblasts.Methods Ectomesenchymal stem cells of human embryo facial process were isolated and cultured in mineralized promoting solution containing 10 mmol/L β-glycerophosphate, 100 μg/ml ascorbic acid and 10 nmol/L dexamethasone supplemented with 15% FBS. The morphological change was observed by phase contrast microscopy. The characteristics of cells was identified by immunohistochemistry assay. Alkaline phosphatase activity was tested and the form of mineralized nodules was tested with Von Kossa staining. The expression of osteocalcin was identified by RT-PCR.Results There were significant changes in the shape of the cells after 3 days cultured in mineralized promoting solution. The cells became larger and the shape changed from fibroblast-like to multilateral. The result for anticollogen typeⅠstaining was positive. The alkaline phosphatase activity increased. Mineralized nodules were formed aftercultured 25 days by Von Kossa staining. RT-PCR assay showed induced cells expressed osteocalcin.Conclusion Ectomesenchymal stem cells of humanembryo facial process can be induced to differentiate into osteoblasts by mineralized promoting solution.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • STUDY OF RAT OSTEOBLASTS TRANSFECTED BY TRANSFORMING GROWTH FACTOR-β1 GENE

    Objective To investigate the effect of transforming growth factor-β1 (TGF-β1) gene transfer on the biological characteristics of osteoblasts. Methods The expression of TGF-β1 in the transfected osteoblasts was detected by in situ hybridization and assay of TGF-β1 activity in the supernatant (minklung epithelium cell growth -inhibition test). The effects of gene transfer andsupernatant of the transfected osteoblasts on the proliferation and alkaline phosphatase(ALP) activity of osteoblasts were detected by 3 H-TdR and MTT. Results The results of in situ hybridization analysis suggested that the osteoblasts transfected by TGF-β1 gene could express TGF-β1 obviously. The complex medium, which was the mixture of serum-free DMEM and the activated supernatant according to 1∶1, 1∶2, 1∶4, could inhibit growth of Mv-1-Lu evidently and the ratios ofinhibition were 16.3%, 22.7%, 28.2% respectively. TGF-β1 gene transfer hadno effect on the biological characteristics of osteoblasts, but the activated supernatant of transfected osteoblasts stimulated proliferation and inhibited ALPactivity of osteoblasts. Conclusion TGF-β1 gene transfer promotes the expression of TGF-β1 and the biological characteristics of trasfected osteoblasts are stable, which is helpful for gene therapy of bone defects in vivo.

    Release date: Export PDF Favorites Scan
  • ROLE OF OSTEOBLASTS IN THE HEMATOPOIETIC MICROENVIRONMENT OF BONE MARROW AND REGULATORY PATHWAYS AND MECHANISMS

    Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • ABSTRACTSCUTURE AND ISOLATION OF PERIOSTEAL OSTEOBLASTS AND AUTORADIOGRAPHICSTUDY OF ITS OSTEOGENESIS

    Osteoblasts were cultured and isolated from a piece of tibial pettiosteum of four New-Zealandrabbits. After subeultured,these cells Were incubatd in vitro with tritiated thvmidine for 36 hoursand then these labeled cells were implanted in the subeutaneous layer of the defects of the auriclarcartilage and the radial bone, After 2 weeks and 4 weeks respectively, these rabbits were killed andthe spoimens were obtained from the site where the cells had been transplanted. The transformation of these cells was observed by autoradiographic method. The results indicated that nearly all of the cultured cells were labeled. After 2 weeks, it was observed that many labeled osteoblasts were in different stages of differentiation, some were beried by extracellular matrix and resembled osteocyte, thers were differentiated into chondrocyte-like cell. In addition, some labeled osteoblasts were congregated in the form of multinucleated osteoclast. After 4 weeks , in the subcutaneous layer the labeled osteoblasts were changed to osteoid tissue and in the defect of the auricular crtilage these cells transformed into chondritic tissue; moreover, those labeled osteoblsts which had been implanted into the radial defect had differentiated into typical bone tissue. The results of this research indicated that the osteoblasts isolated from the periosteum if reimplanted to the same donor might be possible to repair the bone and cartilage defects.

    Release date:2016-09-01 11:18 Export PDF Favorites Scan
  • BIOLOGICAL EFFECT OF WO-1 ON HUMAN EMBRYONIC OSTEOBLASTS

    Objective To investigate the effect of WO-1 on the proliferation and differentiation of human embryonic osteoblasts (HEO) and to provide research methods of bone tissue engineering. Methods HEO were isolated from periosteum and calvaria and then cultrued in vitro. The doseeffect relationship between WO-1 concentration and biological effect of HEO was evaluated by growth curve and 3 H-TdR count. The effect of WO-1 on cell activity and proliferation was investigated by cloning efficiency,cell cycle analysis was determined by flow cytometer and morphological was examined through transmission electron microscope. Moreover, the effect of WO-1 on osteoblastic function was evaluated at protein and mRNA levels by ALP activity, 3 H-proline incorporation, osteocalcin secretion (RIA) and mRNA expression of type I collagen and osteocalcin (RT-PCR). Results The proliferation of HEO was inhibited in high concentration of WO-1,while it was promoted in low concentration of WO-1. The optimal dose was 8 μg/ml, and there was dose-effect relationship in the certain range of WO-1 concentration (0.25 μg/ml to 8 μg/ml). In 8 μg/ml of WO-1, the cloning efficiency and cloning volume of HEO were inereased, population doubling time was decreased.All indexes of ostoblastic function including ALP activity, type I collagen synthesis and osteocalcin secertion were inereased, the more sufficed cell organs were observed under transmission electron microscope than control group(P<0.05). Conclusion WO-1 can promote the cell activity and proliferation of HEO cultured in vitro inlow concentration, enhance the synthesis of extracellular mamix, such as type Icollagen and osteocalcin, and accelerate the mineralization of osteoid. WO-1 can be used as a stimulant of proliferation and differentiation of HEO in the research of bone tissue engineering, which provide the theoretical basis in clinical application.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content