Objective To study the effect of various doses of estrogen on tissue injury, blood supply and survival area of skin flap and to investigate its mechanism. Methods Thirty New Zealand white rabbits aged 3-4 months old and weighing 1.5-2.2 kg (male or female) were used. Random pattern skin flap (12 cm × 3 cm in size) taking the central l ine of the rabbit dorsum as axis and with the pedicle attached at the proximal end was prepared, and the flap pedicle division was performed 7 days after operation. The rabbits were divided randomly into three groups (n=10 rabbits per group). At 2, 4, and 6 days after operation, the proximal edge of flap in group A and B received 100 ?g/kg and 50 ?g/kg subcutaneous injection ofestradiol benzoate, respectively, while group C received no further treatment serving as control group. General condition ofthe rabbits was observed after injection, gross observation was performed 3 and 7 days after injection, survival area of the skin flap was measured 7 days after injection, contents of malondialdehyde (MDA) and nitric oxide (NO) were tested 5 days after injection, and the flaps were harvested 4 and 7 days after injection to receive histology and no significant difference was noted between group A and group B (P gt; 0.05). The NEU counts 4 days after injection were (18.20 ±6.24) cells/HP in group A, (21.27 ± 5.34) cells/HP in group B, and (28.78 ± 7.92) cells/HP in group C, and at 7 days after injection, there were (15.16 ± 7.02) cells/HP in group A, (18.12 ± 6.44) cells/HP in group B, and (29.67 ± 9.12) cells/HP in group C. The VEGF score 4 days after injection was (4.02 ± 0.48) points in group A, (4.19 ± 0.66) points in group B and (3.67 ± 0.49) points in group C, and at 7 day after injection, it was (4.96 ± 0.69) points in group A, (5.12 ± 0.77) points in group B, and (3.81 ± 0.54) points in group C. Significant difference was evident between 4 days and 7 days after injection in group A or B in terms of NEU counts and VEGF score (P lt; 0.05), and difference between 4 days and 7 days after injection in group C was not significant (P gt; 0.05), and the differences among 3 groups were significant (P lt; 0.05). Conclusion Estrogen injection can increase VEGF expression and NO content of flap, decrease MDA content and NEU infiltration of flat, and improve survival area of flap.
Objective To observe the effects of culture medium of amniotic cells on NO and NOS in retinal tissues of rabbits in vitro in order to provide a protective method for antioxidation in retina transplantation. Methods Thirty adult healthy rabbits (30 right eyes) were divided into 3 groups. Group I: fresh retinal tissue; group II: routine culture medium; group III: culture medium of amniotic cells. The retinal tissues in group II and III were cultured in the corresponding culture medium for 1 week. The content of NO and NOS in retinal tissues in the 3 groups were determined. Results Compared with group I, the content of NO and NOS of group II increased obviously (t=3.821, 3.854; P<0.001). There was no statistical difference of content of NO and NOS between group I and III (t=1.657, 1.745; P>0.05). Conclusion Culture medium of amniotic cells may remove free radicals and enhance the ability of antioxidation. (Chin J Ocul Fundus Dis,2004,20:366-368)
In order to study effect of endothelin (ET-1) on hepatic blood flow in rats and effect of nitric oxide (NO) and prostacyclin (PGI2) on ET-1 biological function, 20 rats were randomized into control, ET-1, ET-1 plus nitric-Larginine, ET-1 plus prostacyclin and indomethen groups. The result showed that ET-1 decreased hepatic blood flow and lasted for longer time. NO and PGI2 may antagonize the biological action of ET-1 during endotoxemia. Therefore, the endothelium-derived vascular factors may regulate hepatic blood flow.
ObjectiveTo study the effect of down-regulated leptin receptor by small interfering RNA (siRNA) in inhibiting the messenger RNA (mRNA) expressions of interleukin (IL)-1β and nitric oxide (NO) of human osteoarthritis chondrocytes, in order to provide reference for basic clinical research. MethodsCartilage was harvested under sterile conditions from osteoarthritis knee joints in patients undergoing total knee arthroplasty. Human articular chondrocytes were isolated and the cells were cultured in vitro. The cells in the 3rd passage were transferred by siRNA Ob-Rb (experimental group) and blank Ob-Rb (control group), respectively. Then mRNA expressions of IL-1β and NO were tested by quantitative polymerase chain reaction at hour 24, 48 and 72 after successful transfection. ResultsThe mRNA expressions of IL-1β increased slightly and that of NO declined slightly at hour 24, 48 and 72 after transfection in the treatment group, but they all were significantly lower than those in the control group (P < 0.05) , and the differences became much larger as time went on. ConclusionLeptin receptor under siRNA technology can significantly inhibit the mRNA expressions of IL-1β and NO in human osteoarthritis chondrocytes.
To investigate the function of nitric oxide (NO) and nitric oxide synthetase (NOS) inhibitor, N-nitro-L-arginine methyl ester (L-NAME), the skin avulsion model was made in the lower extremity of pig. The methods of measurement of size of the survived flap, weighing, immunocytochemistry and hybridization in situ were employed, so that the survival surface area of flaps, tissue wet/dry weight ratio, NO content in the serum, gene expression of NO and NOS content in the flap tissue were determined, respectively. The results showed that the early gene expression of NOS was increased as well as the NO content and tissue wet/dry weight ratio (P lt; 0.01). After L-NAME was applied introvenously, the NO content and tissue wet/dry weight ratio were decreased (P lt; 0.01), and the survival surface area of flaps was enlarged (P lt; 0.01). It could be concluded that the NO might play a role in the development of the pathological changes as early congestion, edema and secondary necrosis in the avulsed skin flaps. The early application of L-NAME could do some good to the avulsed skin flap and protect it from further necrosis owing to the presence of NO.
ObjectiveTo compare the biological features of early and late endothelial progenitor cells (EPCs) by isolating and culturing early and late EPCs from the human peripheral blood so as to find some unique properties of EPCs and to propose a suitable strategy for EPCs identification. MethodsMononuclear cells were isolated from the human peripheral blood using density gradient centrifugation. Then, the cells were inoculated in human fibronectin-coated culture flasks and cultured in endothelial cell basal medium 2. After 4-7 days and 2-3 weeks culture, early and late EPCs were obtained respectively. The morphology, proliferation potential, surface markers, cytokine secretion, angiogenic ability, and nitric oxide (NO) release were compared between 2 types of EPCs. Meanwhile, the human aortic endothelial cells (HAECs) were used as positive control. ResultsThe morphology of early and late EPCs was different:early EPCs formed a cell cluster with a spindle shape after 4-7 days of culture, and late EPCs showed a cobblestone appearance. Late EPCs were characterized by high proliferation potential and were able to form capillary tubes on Matrigel, but early EPCs did not have this feature. Both types EPCs could ingest acetylated low density lipoprotein and combine with ulex europaeus Ⅰ. Flow cytometry analysis showed that early EPCs did not express CD34 and CD133, but expressed the CD14 and CD45 of the hematopoietic stem cell markers;however, late EPCs expressed CD31 and CD34 of the endothelial cell markers, but did not express CD14, CD45, and CD133. By RT-PCR analysis, the expressions of vascular endothelial growth receptor 2 and vascular endothelial cadherin in early EPCs were significantly lower than those in the late EPCs and HAECs (P<0.05), but no significant difference was found in the expression of von Willebrand factor and endothelial nitric oxide synthase (eNOS) between 2 type EPCs (P>0.05). The concentrations of vascular endothelial growth factor, granulocyte colony-stimulating factor, and interleukin 8 were significantly higher in the supernatant of early EPCs than late EPCs (P<0.05). Western blot assay indicated eNOS expressed in both types EPCs, while the expression of eNOS in late EPCs was significantly higher than early EPCs at 5 weeks (P<0.05). Both cell types could produce similar amount of NO (P>0.05). ConclusionThe expression of eNOS and the production of NO could be used as common biological features to identify EPCs, and the strategy of a combination of multiple methods for EPCs identification is more feasible.
Objective To investigate the pathogenesis of acute lung injury in rats induced by intra-peritoneally injection of perforative peritonitis ascitic fluids(PPAF) and the role of L-arginine (L-Arg) in acute lung injury in this model. Methods Perforative peritonitis (PP) models were established in 60 rats and PPAF were collected. Forty-eight rats were randomly divided equally into NS group,PPAF group, and L-Arg group. Rats were randomly subjected to death at 7 h and 12 h. Peripheral blood WBC were counted,levels of NO and malondialdehyde (MDA) in serum were examined. Lung injury score and wet/dry ratio were evaluated, and level of myeloperoxidase (MPO) in lung tissues and lung cell apoptosis were tested. Results WBC count of peripheral blood, levels of NO and MDA in serum, level of MPO in lung tissue, lung injury score, wet/dry ratio, and lung cell apoptosis rate in PPAF group were significantly higher than that in NS group at each time point(P<0.01). Level of NO in serum in L-Arg group was higher than that in PPAF group (P<0.01), but lower level of MDA in serum, lower level of MPO in lung tissue and lung injury score,lower wet/dry ratio, and lung cell apoptosis rate were observed in L-Arg group(P<0.05). In PPAF group and L-Arg group, level of NO in serum, wet/dry ratio, and lung cell apoptosis rate were higher at 12 h than that at 7 h(P=0.000). Serum NO level was in negative correlation with serum MDA level (r=-0.257,P=0.021), MPO level in lung tissue(r=-0.444, P=0.011),and lung cell apoptosis(r=-0.351, P =0.010) in PPAF group and L-Arg group, but serum MDA level was in positive correlation with cell apoptosis(r=0.969, P<0.001) in each group. Conclusions Acute lung injury rats model can be established by intra-peritoneally injection of PPAF. Enhanced oxidizing reaction and cell apoptosis take part in the occurrence of acute lung injury. L-Arg plays a protective role in acute lung injury.
ObjectiveTo analyze the expression of VEGF, IL-33 and NO concentration after laser photocoagulation and subthreshold micropulse laser photocoagulation conventional in proliferative diabetic retinopathy (PDR) patients.MethodsA case control study. The clinical data of 39 patients of PDR and 11 patients of idiopathic macular pucker (IMP) from Department of Ophthalmology, Central Theater General Hospital during November 2015 were collected in this study. PDR patients were assigned randomly into three groups. Fifteen PDR patients with 15 eyes were treated with conventional laser as group A. Thirteen PDR patients with 13 eyes were treated with subthreshold micropulse laser as group B. Eleven PDR patients with 11 eyes without any laser therapy were grouped as C. Eleven IMP patients were grouped as D. There was no difference of age (F=0.53, P=0.23), gender ratio (χ2=0.55, P=0.91), body mass index (F=2.62, P=0.07), duration diabetes (F=0.29, P=0.75), glycoslated hemglobin (F=1.72, P=0.19) in four groups. All PDR patients were examined with FFA. Total protein was quantified by a bicinchoninic acid assay kit. Levels of VEGF, IL-33, NO were determined using enzyme-linked immunosorbent assay kits.ResultsThere was no difference of total protein in four groups (F=1.78, P=0.17). Group C had a higher VEGF level than group A and B (F=7.84, P=0.002). Group A had a higher IL-33 level than group C (t=4.15, P=0.02). There was no difference of IL-33 level in group B and C (t=1.34, P=0.20). Group D had a lower NO level than group A, B, C (F=38.42, P<0.001). There was no difference of NO level in group A, B and C (F=3.29, P=0.06).ConclusionsBoth conventional laser photocoagulation and subthreshold micropulse laser photocoagulation can decrease vitreous VEGF level and subthreshold micropulse laser photocoagulation can induce less IL-33 level.
Objective The effects of endotoxin, cytokines, nitric oxide were reviewed in the development of hyperdynamic circulatory syndrome in portal hypertension. Methods Liceratures of overseas main studies in hyperdynamic circulatory syndrome of portal hypertension in recent 10 years were reviewed. Results The hyperdynamic circulatory syndrome was found in 30%-50% of patients with cirrhosis and in all animal models of portal hypertension. The research results of the effects of endotoxin, cytokines, nitric oxide in the development of hyperdynamic circulatory syndrome were different. Conclusion Hyperdynamic circulatory syndrome contribute to the maintenance and aggregation of portal hypertension. Endotoxin, cytokines, nitric oxide may play a role in the development of hyperdynamic circulatory syndrome. Nitric oxide is a more important factor. The effect of other factors is probably mediated by nitric oxide.
Objective To investigate the effects of nitric oxide precursor L-arginine on traumatic pulmonary contusion. Methods Sixty Sprague-Dawley rats were randomly divided into three groups, ie. a normal group, a model group, and a L-arginine group. The model of traumatic pulmonary contusion was established with self-made chest-impacter. Then the rats in the L-arginine group was injected intravenously with L-arginine in a dose of 250 mg/kg. All rats were sacrificed at 24 hours after these models established.Levels of TNF-α and nitric oxide ( NO2 - /NO3- ) in serum were measured by ELISA and diazo-reaction method. Lung wet/dry weight ratio, NF-κB, endothelin-1, apoptotic cell, and ICAM-1 ( intercellular adhesion molecule-1) mRNA expressions in the lung tissue were measured. Results Compared with the model group,TNF-αand lung wet/dry weight ratio decreased significantly in the L-arginine group( P lt; 0. 05) . After the L-arginine treatment, the concentration of nitric oxide, apoptotic index were significantly higher than the model group ( P lt; 0. 05) . The expressions of NF-κB, endothelin-1, and ICAM-1 mRNA in the L-arginine group were lower than those in the model group ( P lt;0. 05) . Conclusion L-arginine treatment can downregulate the expressions of NF-κB, ET-1, ICAM-1 mRNA and apoptosis obviously, and ameliorate the microcirculation of rats lung with traumatic pulmonary contusion.