west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Multi-scale" 25 results
  • Automatic epilepsy detection with an attention-based multiscale residual network

    The deep learning-based automatic detection of epilepsy electroencephalogram (EEG), which can avoid the artificial influence, has attracted much attention, and its effectiveness mainly depends on the deep neural network model. In this paper, an attention-based multi-scale residual network (AMSRN) was proposed in consideration of the multiscale, spatio-temporal characteristics of epilepsy EEG and the information flow among channels, and it was combined with multiscale principal component analysis (MSPCA) to realize the automatic epilepsy detection. Firstly, MSPCA was used for noise reduction and feature enhancement of original epilepsy EEG. Then, we designed the structure and parameters of AMSRN. Among them, the attention module (AM), multiscale convolutional module (MCM), spatio-temporal feature extraction module (STFEM) and classification module (CM) were applied successively to signal reexpression with attention weighted mechanism as well as extraction, fusion and classification for multiscale and spatio-temporal features. Based on the Children’s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) public dataset, the AMSRN model achieved good results in sensitivity (98.56%), F1 score (98.35%), accuracy (98.41%) and precision (98.43%). The results show that AMSRN can make good use of brain network information flow caused by seizures to enhance the difference among channels, and effectively capture the multiscale and spatio-temporal features of EEG to improve the performance of epilepsy detection.

    Release date: Export PDF Favorites Scan
  • A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism

    Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Multi-classification prediction model of lung cancer tumor mutation burden based on residual network

    Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
  • The dual-stream feature pyramid network based on Mamba and convolution for brain magnetic resonance image registration

    Deformable image registration plays a crucial role in medical image analysis. Despite various advanced registration models having been proposed, achieving accurate and efficient deformable registration remains challenging. Leveraging the recent outstanding performance of Mamba in computer vision, we introduced a novel model called MCRDP-Net. MCRDP-Net adapted a dual-stream network architecture that combined Mamba blocks and convolutional blocks to simultaneously extract global and local information from fixed and moving images. In the decoding stage, we employed a pyramid network structure to obtain high-resolution deformation fields, achieving efficient and precise registration. The effectiveness of MCRDP-Net was validated on public brain registration datasets, OASIS and IXI. Experimental results demonstrated significant advantages of MCRDP-Net in medical image registration, with DSC, HD95, and ASD reaching 0.815, 8.123, and 0.521 on the OASIS dataset and 0.773, 7.786, and 0.871 on the IXI dataset. In summary, MCRDP-Net demonstrates superior performance in deformable image registration, proving its potential in medical image analysis. It effectively enhances the accuracy and efficiency of registration, providing strong support for subsequent medical research and applications.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Lung parenchyma segmentation based on double scale parallel attention network

    [Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the “encoder-decoder” structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.

    Release date:2022-10-25 01:09 Export PDF Favorites Scan
  • Predicting epileptic seizures based on a multi-convolution fusion network

    Current epilepsy prediction methods are not effective in characterizing the multi-domain features of complex long-term electroencephalogram (EEG) data, leading to suboptimal prediction performance. Therefore, this paper proposes a novel multi-scale sparse adaptive convolutional network based on multi-head attention mechanism (MS-SACN-MM) model to effectively characterize the multi-domain features. The model first preprocesses the EEG data, constructs multiple convolutional layers to effectively avoid information overload, and uses a multi-layer perceptron and multi-head attention mechanism to focus the network on critical pre-seizure features. Then, it adopts a focal loss training strategy to alleviate class imbalance and enhance the model's robustness. Experimental results show that on the publicly created dataset (CHB-MIT) by MIT and Boston Children's Hospital, the MS-SACN-MM model achieves a maximum accuracy of 0.999 for seizure prediction 10 ~ 15 minutes in advance. This demonstrates good predictive performance and holds significant importance for early intervention and intelligent clinical management of epilepsy patients.

    Release date:2025-10-21 03:48 Export PDF Favorites Scan
  • Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion

    Medical image registration plays an important role in medical diagnosis and treatment planning. However, the current registration methods based on deep learning still face some challenges, such as insufficient ability to extract global information, large number of network model parameters, slow reasoning speed and so on. Therefore, this paper proposed a new model LCU-Net, which used parallel lightweight convolution to improve the ability of global information extraction. The problem of large number of network parameters and slow inference speed was solved by multi-scale fusion. The experimental results showed that the Dice coefficient of LCU-Net reached 0.823, the Hausdorff distance was 1.258, and the number of network parameters was reduced by about one quarter compared with that before multi-scale fusion. The proposed algorithm shows remarkable advantages in medical image registration tasks, and it not only surpasses the existing comparison algorithms in performance, but also has excellent generalization performance and wide application prospects.

    Release date: Export PDF Favorites Scan
  • Brain computer interface nursing bed control system based on deep learning and dual visual feedback

    In order to meet the need of autonomous control of patients with severe limb disorders, this paper designs a nursing bed control system based on motor imagery-brain computer interface (MI-BCI). In view of the low decoding performance of cross-subjects and the dynamic fluctuation of cognitive state in the existing MI-BCI technology, the neural network structure optimization and user interaction feedback enhancement are improved. Firstly, the optimized dual-branch graph convolution multi-scale neural network integrates dynamic graph convolution and multi-scale convolution. The average classification accuracy is higher than that of multi-scale attention temporal convolution network, Gram angle field combined with convolution long short term memory hybrid network, Transformer-based graph convolution network and other existing methods. Secondly, a dual visual feedback mechanism is constructed, in which electroencephalogram (EEG) topographic map feedback can improve the discrimination of spatial patterns, and attention state feedback can enhance the temporal stability of signals. Compared with the single EEG topographic map feedback and non-feedback system, the average classification accuracy of the proposed method is also greatly improved. Finally, in the four classification control task of nursing bed, the average control accuracy of the system is 90.84%, and the information transmission rate is 84.78 bits/min. In summary, this paper provides a reliable technical solution for improving the autonomous interaction ability of patients with severe limb disorders, which has important theoretical significance and application value.

    Release date:2025-10-21 03:48 Export PDF Favorites Scan
  • A multi-scale feature capturing and spatial position attention model for colorectal polyp image segmentation

    Colorectal polyps are important early markers of colorectal cancer, and their early detection is crucial for cancer prevention. Although existing polyp segmentation models have achieved certain results, they still face challenges such as diverse polyp morphology, blurred boundaries, and insufficient feature extraction. To address these issues, this study proposes a parallel coordinate fusion network (PCFNet), aiming to improve the accuracy and robustness of polyp segmentation. PCFNet integrates parallel convolutional modules and a coordinate attention mechanism, enabling the preservation of global feature information while precisely capturing detailed features, thereby effectively segmenting polyps with complex boundaries. Experimental results on Kvasir-SEG and CVC-ClinicDB demonstrate the outstanding performance of PCFNet across multiple metrics. Specifically, on the Kvasir-SEG dataset, PCFNet achieved an F1-score of 0.897 4 and a mean intersection over union (mIoU) of 0.835 8; on the CVC-ClinicDB dataset, it attained an F1-score of 0.939 8 and an mIoU of 0.892 3. Compared with other methods, PCFNet shows significant improvements across all performance metrics, particularly in multi-scale feature fusion and spatial information capture, demonstrating its innovativeness. The proposed method provides a more reliable AI-assisted diagnostic tool for early colorectal cancer screening.

    Release date:2025-10-21 03:48 Export PDF Favorites Scan
  • Motor imagery classification based on dynamic multi-scale convolution and multi-head temporal attention

    Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.

    Release date:2025-08-19 11:47 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content