Objective To detect the expression of thromhospondin-1 (TSP-1) in gastric cancer and metastaticlymph node tissues, and to study its relationship of TSP-1 to clinicopathologic parameters or tumor angiogenesis. Methods The TSP-1 and vascular endothelial growth factor (VEGF) expressions and microvessel density (MVD) were evaluated by immunohistochemistry in 72 specimens obtained by gastric resection from patients with gastric cancer, including corres-ponding adjacent normal gastric mucosa tissues (distant from cancer ≥5 cm) and lymph nodes surrounding cancer. A semiquantitative scoring system was used for evaluating the staining. The relationship of TSP-1 to VEGF expression, MVD, or clinicopathologic parameters was analyzed. Results ① TSP-1 positive expression rate was 45.8% (33/72) in the primary gastric cancer tissues, 90.3% (65/72) in the corresponding adjacent normal gastric mucosa tissues, and 50.8% (30/59) in the metastatic lymph nodes tissues. The expressions of TSP-1 in the primary gastric cancer tissues and metastatic lymph nodes tissues were significantly lower than those in the adjacent normal gastric mucosa tissues (χ2=32.710,P=0.000;χ2=25.298, P=0.000). The expression of TSP-1 had no statistical significance in the primary gastric cancer tissues as compared with in the metastatic lymph nodes tissues (χ2=0.327, P=0.568). ② The expression of TSP-1 in the metastatic lymph nodes tissues was significantly lower than that in the non-metastatic lymph nodes tissues (Z=-2.573, P=0.010). ③The expression of TSP-1 in the primary gastric cancer tissues and metastatic lymph nodes tissues suggested a negative correlation with VEGF (rs=-0.309, P=0.008;rs=-0.269, P=0.040) and MVD (rs=-0.348, P=0.003;rs=-0.272, P=0.037). Conclusions TSP-1 expression is down-regulated and has a negative correlation with VEGF and MVD in the primary gastric cancer and the metastatic lymph nodes tissues. According to the present results, it seems likely that TSP-1 is a tumor angiogenesis inhibitor.
ObjectiveTo assess the feasibility of intravoxel incoherent motion diffusion-weighted imaging (IVIM) in evaluating microvessel density (MVD) and microvascular invasion (MVI) of hepatocellular carcinoma (HCC).MethodsRat models were established to be scanned by IVIM. HCC lesions corresponding to IVIM image were examined pathologically to get data of MVD and MVI. Spearman correlation analysis was used to compare the apparent diffusion coefficient (ADC), D, D*, and f with MVD, independent samples t test was used to compare ADC, D, D*, and f between MVI (+) and MVI (–) groups.ResultsFifty HCC lesions were included finally. ADC and D values both showed a negative correlation with MVD (r=–0.406, P=0.003; r=–0.468, P=0.001), D* and f showed no statistical correlation with MVD (P=0.172, 0.074, respectively). The differences in ADC and all the IVIM parameters (D, D*, and f) between MVI (+) and MVI (–) HCCs were not statistically significant (P=0.393, 0.395, 0.221, 0.550).ConclusionADC and D can be used to evaluate MVD of HCC, but ADC and IVIM parameters were limited in evaluating MVI.
In order to study the influence of reperfusion following ischemia on microvesseles and microcirculation of skeletal muscle, unilateral hindlimbs of 16 rabbits were subjected to normothermic ischemia for 2 and 5 hours by tourniquet. After release of the tourniquet, microcirculation of the peritenon on dorsum of the foot was observed for 1 hours by intravital microscope. At 1 hour and 72 hours following reperfusion, the anterior tibia muscle biopsiy were taken and the specimens were subjected to light and electron microscopic examinations. It was found that after release of the tourniquet, in the limbs undergone 2 hours ischemia, there was immediate and well distributed reflow in the microvesseles of peritenon though a few aggregates of red cells and increase in the number of adherent leukocytes occured in some venules, and the microvesseles of the skeletal muscle only showed signs of minimal injury, the muscle fibers could survive in the limbs undergone 5 hours of ischemia, however, there was serious disturbance of microcirculation in theperitenon, which was characterized by "no reflow" in most area and there was signi ficant increase in the number of leukocytes adherent to venular endothelium, and the microvesseles of the skeletal muscle showed signs of severe injury, including remarkable swelling of the endothelial cell, disruption of the basement membrane and interstitial edema, and finally, most of the muscle fibers had necrosis occured. The results demonstrated that reperfusion following ischimia might result in microvascular injury and microcirculation disorder in the ischemic area. The degree of the injury and disorder depended on the duration of ischemic period, and was an important factor which determined the fate of the parenchymal cell.
Objective To investigate the expression levels and significance of vascular endothel ial growth factor (VEGF) and microvessel density (MVD) in rabbit radius defects repaired with allogeneic and autogenic bone. Methods Forty adult New Zealand rabbits were chosen, and 10 mm bone defect model was created in the bilateral radii of 28 experimental rabbits. The other 12 rabbits provided allogeneic bone under the standard of American Association of Tissue Bank. In the left side, allogeneic bone were used to repair bone defect (experimental group), equal capacity autogenous il iac bone was used in the right side (control group). Animals were sacrificed at 2, 4, 8, and 12 weeks postoperatively. Immunohistochemical method was used to determine the expression of VEGF, CD34 protein and MVD counting. Bone histomorphometric parameters, including percent trabecular area (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured by von Kossa staining undecalcified sl ices. The relation was analyzed between VEGF and MVD, histomorphometric parameters. Results The positive signals of VEGF protein were detected in cytoplasm of vascular endothel ial cells, chondrocytes, osteoblasts, fibroblasts and osteoclasts. At 2 weeks, there was no significant difference in VEGF protein expression between experimental group and control group (P gt; 0.05); at 4 and 8 weeks, the expression of VEGF in control group was significantly higher than that in experimental group (P lt; 0.05); and at 12 weeks, there was no significant difference between two groups (P gt; 0.05). There was a positive correlation (P lt; 0.01) between VEGF expression and MVD value in two groups at 2, 4, 8, and 12 weeks postoperatively. There was no significant difference in bone histomorphometric parameters (BV/TV, Tb.Th, Tb.N, Tb.Sp) between two groups at 12 weeks postoperatively (P gt; 0.05), but there was a positive correlation between VEGF expression and parameters of BV/TV, Tb.Th, and Tb.N (P lt; 0.01); and a negative correlation between VEGF and Tb.Sp (P lt; 0.01). Conclusion VEGF can express diversity at different time and positions, and the different expressions indicated various biology significances in the process of the bone heal ing. It can coordinate growth of cartilage and bone and profit vascular reconstruction of allogeneic bone. VEGF may participate in promoting osteogenesis in the course of allogeneic bone transplantation.
ObjectiveTo investigate the expression of keratinocyte growth factor (KGF) and cyclooxygen-ase-2 (COX-2) protein and microvessel density (MVD), and to explore their function and mechanism in the multistep process of gastric cancer. MethodsThe expressions of KGF and COX-2 protein in 64 samples of gastric cancer and 30 cases of normal gastric mucosa tissues were detected by immunohistochemistry. The MVD was detected by staining the endothelial cells in microvessles using anti-CD34 antibody. ResultsThe positive rate of KGF and COX-2 protein expression in gastric cancer were 65.6% (42/64) and 79.7% (51/64), respectively, which was significantly higher than that in normal gastric mucosa tissues 〔(23.3%, 7/30), P=0.046; (13.3%, 4/30), P=0.008〕. The MVD of gastric cancer was 31.8±8.0, which was significantly higher than that of normal gastric mucosa tissues (14.3±6.1), P=0.000. The MVD in gastric cancer with coexpressive KGF and COX-2 protein was 35.9±5.7, which was significant higher than that with non-coexpressive KGF and COX-2 protein (25.7±7.0), P=0.000. Both the expression of KGF and COX-2 protein were related to the invasion of serosa, lymph node metastasis and TNM staging (Plt;0.05, Plt;0.01). The MVD of gastric cancer tissues was related to lymph node metastasis and TNM staging (Plt;0.05), but unrelated to patient’s age, gender, and differentiation of tumor (Pgt;0.05). The co-expression of KGF and COX-2 protein was frequently found in patients with deeper invasion of serosa, lymph node metastasis, and higher TNM staging (Plt;0.05), but which was not associated withpatient’sage, gender, and differentiation of tumor (Pgt;0.05). The expression of KGF protein was positively correlated to the expression of COX-2 protein (r=0.610, P=0.000). There was positive correlation between MVD and the expression of KGF (r=0.675, P=0.000) and COX-2 protein (r=0.657, P=0.000) in gastric cancer, respectively. ConclusionKGF and COX-2 highly expressed by gastric cancer, which may be involved in the invasion and metastasis of gastric cancer by synergisticly promoting the angiogenesis.
ObjectiveTo explore the dynamic changes of microvessels in the hippocampal CA3 area in mice model of temporal lobe epilepsy (TLE) induced by pilocarpine. MethodsEighteen health SPF male C57BL/6 mice were randomly divided into control group and status epilepticus (SE) group. The SE group was subdivided into three groups:SE-7 days, SE-28 days and SE-56 days. SE was induced by intraperitoneal injection of pilocarpine. And immunohistochemical staining was used to detected the localization of platelet endothelial cell adhesion molecule-1 (PECAM-1). ResultsIn the control group, PECAM-1 labeled microvessels arranged in a layered structure, and the microvessel of the orient layer was most prominent. After SE, the microvessels started to form an unorganized vascular plexus and appeared fibrous and fragmented, which was prominent at SE-28 days. Furthermore, the microvessels density increased the top at SE-28 days compared to the control (P < 0.001). ConclusionThe angiogenesis exists during the hippocampus formation in the mice model of TLE induced by pilocarpine, which could direct a new explanation for TLE formation and development.
ObjectiveTo observe the vascularity in periprosthetic tissues of aseptic loosening after total hip arthroplasty (THA) and to explore the relationship between expression of vascularity and osteolysis. MethodsBetween October 2009 and June 2012, interface tissues were obtained from 22 patients (22 hips) who underwent revision of THA because of prosthetic aseptic loosening, including 12 males and 10 females with the age range of 53-81 years and prosthesis survival range of 6-14 years. The interface tissues were divided into osteolysis group and non-osteolysis group based on preoperative X-ray findings and intraoperative observation. The synovial tissues were harvested from another 8 patients (3 males and 5 females, aged 58-72 years) with osteoarthritis undergoing THA as control group. HE stainging was used to observe the histological character, and low-wear or high-wear was identified according to metal or polyethylene particles amount in osteolysis group. The CD34 immunohistochemical staining was used to mark the blood vessels. Microvessel density and microvessel index were calculated with the use of image analysis software. ResultsHistological observation showed that wear particles and numerous macrophages/multinucleated giant cells accumulated in the membrane of osteolysis group, while many fibroblasts and synovial cells existed in non-osteolysis group. The microvessels density and microvessel index were significantly lower in non-osteolysis group than those in osteolysis group and control group (P<0.05), and there was no significant difference in microvessel density and microvessel index between osteolysis group and control group (P>0.05). There were less microvessel density and microvessel index in heavy-loaded metal or polyethylene wear particles areas than those in low-loaded metal or polyethylene wear particles areas (P<0.05), and there was no significant difference in microvessel index and microvessel index between low-wear group and high-wear group for either polyethylene or metal particles (P>0.05). ConclusionThe phagocytosis of macrophage in periprosthetic tissues need vicinal microvessels formation and blood supply to some extent. Vascular injury and decreased blood supply at the implant-bone interface seem to be one of the reasons for insufficient implant osseointegration and aseptic loosening.
Objective To observe the expression levels of nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and CD31 in portal vein and surrounding tissues of rats during the formation process of cavernoustransformation of portal vein (CTPV), and try to search the relationship between NF-κB, VEGF, and the angiogenesisof portal areas, as well as the significance and the role of NF-κB and VEGF in the formation process of CTPV. Methods One hundred and ten Sprague-Dawley (SD) rats were randomly (random number method) divided into sham operation group and model group. The partial constriction operations on portal vein were performed in model rats with a blunt 21Gcaliber to establish CTPV animal models (model group), while the exploratory operations on portal vein, not constriction,were performed in rats of sham operation group. All specimens (portal vein and surrounding tissues) were fixed in formalinand made into paraffin blocks. Each specimen was tested by immunohistochemistry for the expressions of NF-κB, VEGF, and CD31, then optical density (OD) of NF-κB expression and the mean integral optical density (IOD) of VEGF expressionwere measured by using Image Pro Plus 6.0 software, and microvessel density (MVD) was calculated under microscope. Results Nucleoplasm ratio of OD value of NF-κB, mean IOD value of VEGF, and MVD value in 1, 2, 3, 4, and 6 weeks after operation didn’t significantly differed from that of before operation in sham operation group (P>0.05), but higher at all time points after operation in model group (P<0.01). Compared with sham operation group, nucleoplasm ratio of OD value of NF-κB, mean IOD value of VEGF, and MVD value were significantly higher in 1, 2, 3, 4, and 6 weeks after operation in model group (P<0.01). NF-κB and VEGF, NF-κB and MVD, VEGF and MVD were positively correlated with each other (r=0.654 6,P<0.01;r=0.620 7, P<0.01;r=0.636 9, P<0.01) in model group. Conclusion NF-κB and VEGF may relate to the formation of CTPV, and may involve in the angiogenesis.
ObjectiveTo study the effects of the expressions of endostatin, basic fibroblast growth factor (bFGF) and CD34 on oncogenesis and progression of gallbladder cancer, and to explore some valuable criterias for its biotherapy. Methods The expressions of endostatin, bFGF and CD34 were studied by means of immunohistochemistry (SP) in 61 cases of gallbladder cancer and 10 cases of normal cholecystic tissue, and microvessel density (MVD) was calculated by the expression of CD34. Their relationships with clinical pathological features were also investigated. Results The expression rates of endostatin in normal cholecystic tissue and in gallbladder cancer tissue were 40.00% (4/10) and 77.05% (47/61) respectively, which had statistical difference (P<0.05). The expression of endostatin in 61 cases of caner was relational to clinical stage and metastasis of lymph nodes (P<0.05), while no significant correlation was detected with sex and age of patient, location of tumor, size of tumor and histologic grade (P>0.05). The expression rates of bFGF in normal cholecystic tissue and in gallbladder cancer tissue were 20.00%(2/10) and 67.21% (41/61) respectively, which had statistical difference (P<0.05). The expression of bFGF in 61 cases of caner was relational to clinical stage and metastasis of lymph nodes (P<0.05), while no significant correlation was detected with sex and age of patient, location of tumor, size of tumor and histologic grade (P>0.05). MVD in gallbladder cancer tissue and in normal cholecystic tissue was (76.66±20.15) piece/HP and (29.53±5.03) piece/HP respectively, showing significant difference (P<0.01). In 61 cases of cancer, MVD in clinical stage Ⅲ~Ⅴ 〔(80.53±17.98) piece/HP〕 was much higher than that in stage Ⅰ+Ⅱ 〔(46.79±5.38) piece/HP〕, P<0.01; MVD was higher in those with lymph nodes metastasis 〔(94.60±7.28) piece/HP〕 than those without metastasis 〔(58.12±9.24) piece/HP〕, P<0.01; and MVD was (60.59±14.71) piece/HP in histologic grade G1, (83.08±15.30) piece/HP in G2, and (96.53±6.92) piece/HP in G3, the difference was significant among them (P<0.01). There was no significant correlation between MVD and sex and age of patient, location of tumor and size of tumor (P>0.05). There were statistically significant correlations between expressions of endostatin and MVD (P<0.01), expressions of bFGF and MVD (P<0.01). Conclusions The result suggests that endostatin, bFGF and CD34 play roles in oncogenesis and progression of gallbladder cancer. Detection of these proteins has positive effects on diagnosis, malignant degree determination and treatment of gallbladder cancer.
Objective To evaluate the effect on microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression of combining radiofrequency ablation (RFA) with arsenious acid (AA) locally treating liver VX2 tumor in rabbits. Methods Twenty-eight New Zealand White rabbits with implanted liver VX2 tumors were randomly divided into four groups, control group (n=7), AA group (n=7), RFA group (n=7) and combination (RFA+AA) group (n=7). All rabbits were killed 14 days after treatment. MVD and VEGF expression were examined by immunohistochemistry. Results The MVD degraded one by one in control group,AA group,RFA group and RAF+AA group, which were (38.50±0.44), (23.07±0.47), (18.65±0.39) and (11.36±0.36)/HP respectively, compared while each two groups, P<0.05. The VEGF expression also degraded one by one, the ratio of positive cases were 7/7, 5/7, 4/7 and 2/7 respectively, compared while each two groups, P<0.05. There was positive correlation between VEGF expression and MVD (Person conefficient of product-moment correlation r=0.47, P<0.01). Conclusion Combining RAF with AA therapy can greatly decrease MVD and VEGF expression of tumor tissue.