west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "MSCs" 231 results
  • BIOLOGICAL CHARACTERISTICS AND MR IMAGING OF SUPERPARAMAGNETIC IRON OXIDE LABELED BMSCs

    Objective To explore the label ing efficiency and cellular viabil ity of rabbit BMSCs labeled with different concentrations of superparamagnetic iron oxide (SPIO) particles, and to determine the feasibil ity of magnetically labeled stem cells with MR imaging. Methods The BMSCs were collected from il iac marrow of 10 adult rabbits (weighing 2.5-3.0 kg) and cultured. The SPIO-poly-L-lysine compound by different ratios mixed with medium, therefore, the final concentration of Fe2+ was 150 (group A), 100 (group B), 50 (group C) and 25 μg (group D) per mL, respectively, the 3rd generation BMSCs culture edium was added to lable; non-labeled cells served as a control (group E). MR imaging of cell suspensions was performed by using T1WI and T2WI sequences at a cl inical 1.5 T MRI system. Results BMSCs were efficiently labeled with SPIO, labeled SPIO particles were stained in all cytoplasms of groups A, B, C and D. With the increasing of Fe2+ concentration, blue dye particles increased. The staining result was negative in group E. The cell viabil ity in groups A, B, C, D and E was 69.20% ± 6.11%, 80.41% ± 2.42%, 94.32% ± 0.67%, 96.24% ± 0.34% and 97.43% ± 0.33%, respectively. There were statistically significant differences between groups A, B and groups C, D and E (P lt; 0.05), and between group A and group B (P lt; 0.05). T1WI images had no specific difference among 5 groups, T2WI images decreased significantly in groups A, B, C, decreased sl ightly in group D, and had l ittle change in group E. The T2WI signal intensities of groups A, B, C, D and E were 23.37 ± 6.21, 26.73 ± 3.60, 29.63 ± 2.82, 45.03 ± 6.76 and 783.15 ± 7.38, respectively, showing significant difference between groups A, B, C, D and group E (P lt; 0.05), and between groups A, B, C and group D (Plt; 0.05). Conclusion BMSCs can be easily and efficiently labeled by SPIO without interference on the cell viabil ity in labled concentration of 20-50 μg Fe2+ per mL. MRI visual ization of SPIO labeled BMSCs is feasible, which may be critical for future experimental studies.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EFFECTS OF PLATELET-RICH PLASMA ON BMSCs DIFFERENTIATION INTO SC IN VITRO

    Objective To explore effect of platelet-rich plasma (PRP) on rabbit BMSCs differentiation into SC in vitro and to detect secretory function of the differentiated cells. Methods BMSCs isolated from 5 mL bone marrow of 2-montholdNew Zealand white rabbit were cultured using density gradient centrifugation and adherence screening methods. A total of 5 mL femoral vein blood was obtained from rabbits to prepare PRP using modified Appel method. The BMSCs at passage 3 were divided into three groups: the combined induction group, in which the cells were cultured with complete medium containing PRP after β-mercaptoethanol and retinoic acid inductions; the simple induction group, in which the cells were cultured with L-DMEM complete medium without PRP afterβ-mercaptoethanol and retinoic acid induction; the control group, in which the cells were cultured with L-DMEM complete medium. Growth condition of the cells in each group was observed using inverted microscope. cell identification was conducted at 4, 7, 9, and 11 days after culture using immunofluorescence staining method, and NGF content was detected by ELISA method. NGF mRNA expression was assayed by RT-PCR 11 days after culture. Results Most cells in the combined induction and the simple induction group were out of BMSCs typical cell morphology 4 days after culture; cells in the combined induction group were out of BMSCs typical cell morphology and changed into cells resembl ing SC in terms of morphology and contour 9 days after culture. The cells in the control group showed no obvious morphological changes. S-100 protein expression in the cells was evident in the combined induction and the simple induction group at each time point after induced culture; the positive expression rate of cell in each group was increased over time, and significant differences were evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05). Control groupwas negative for the expression. There were significant differences when comparing the control group with the combined induction group or the simple induction group in terms of NGF content at each time point (P lt; 0.01). Significant difference was evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05), and no significant difference was noted 4 days after culture (P gt; 0.05). Relative intensity of NGF mRNA expression in the combined induction group was greater than that of the simple induction group 11 days after culture (P lt; 0.05). Conclusion Rabbit BMSCs can differentiate into SC excreting NGF under certain induction condition in vitro. PRP can remarkably promote BMSCs differentiation into SC.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • PRELIMINARY STUDY OF BMSCs SEEDED INTO COLLAGEN Ⅰ -GLYCOSAMINOGLYCAN MATRICES INDUCEDTOWARD CARTILAGE

    【Abstract】 Objective To investigate the possibil ity of BMSCs seeded into collagen Ⅰ -glycosaminoglycan (CG)matrices to form the tissue engineered cartilage through chondrocyte inducing culture. Methods Bone marrow aspirate of dogs was cultured and expanded to the 3rd passage. BMSCs were harvested and seeded into the dehydrothemal treatment (DHT)cross-l inked CG matrices at 1×106 cells per 9 mm diameter sample. The samples were divided into experimental group and control group. In the experimental group, chondrogenic differentiation was achieved by the induction media for 2 weeks. Medium was changed every other day in both experimental group and control group. The formation of cartilage was assessed by HE staining and collagen Ⅱ immunohistochemical staining. Results The examinations under the inverted phase contrast microscopeindicated the 2nd and 3nd passage BMSCs had the similar morphology. HE staining showed the BMSCs in the experimental group appeared polygon or irregular morphology in the CG matrices, while BMSCs in the control group appeared fibroblast-l ike spindle or round morphology in the CG matrices. Extracellular matrix could be found around cells in the experimental group. Two weeks after seeded, the cells grew in the CG matrices, and positive collagen Ⅱ staining appeared around the cells in the experimentalgroup. There was no positive collagen Ⅱ staining appeared in the control group. Conclusion It is demonstrated that BMSCs seeded CG matrices can be induced toward cartilage by induction media.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • EFFECT OF BMSCs TRANSPLANTATION ON CARDIAC FUNCTION OF DIABETES MELLITUS RATS

    Objective To observe the effect of BMSCs on the cardiac function in diabetes mellitus (DM) rats through injecting BMSCs into the ventricular wall of the diabetic rats and investigate its mechanism. Methods BMSCs isolated from male SD rats (3-4 months old) were cultured in vitro, and the cells at passage 5 underwent DAPI label ing. Thirty clean grade SD inbred strain male rats weighing about 250 g were randomized into the normal control group (group A), the DM group (group B), and the cell transplantation group (group C). The rats in groups B and C received high fat forage for 4 weeks and the intraperitoneal injection of 30 mg/kg streptozotocin to made the experimental model of type II DM. PBS and DAPI-labeledpassage 5 BMSCs (1 × 105/μL, 160 μL) were injected into the ventricular wall of the rats in groups B and C, respectively. After feeding those rats with high fat forage for another 8 weeks, the apoptosis of myocardial cells was detected by TUNEL, the cardiac function was evaluated with multi-channel physiology recorder, the myocardium APPL1 protein expression was detected by Western blot and immunohistochemistry test, and the NO content was detected by nitrate reductase method. Group C underwent all those tests 16 weeks after taking basic forage. Results In group A, the apoptosis rate was 6.14% ± 0.02%, the AAPL1 level was 2.79 ± 0.32, left ventricular -dP/dt (LV-dP/dt) was (613.27 ± 125.36) mm Hg/s (1 mm Hg=0.133 kPa), the left ventricular end-diastol ic pressure (LVEDP) was (10.06 ± 3.24) mm Hg, and the NO content was (91.54 ± 6.15) nmol/mL. In group B, the apoptosis rate was 45.71% ± 0.04%, the AAPL1 level 1.08 ± 0.24 decreased significantly when compared with group A, the LVdP/ dt was (437.58 ± 117.58) mm Hg/s, the LVEDP was (17.89 ± 2.35) mm Hg, and the NO content was (38.91±8.67) nmol/mL. In group C, the apoptosis rate was 27.43% ± 0.03%, the APPL1 expression level was 2.03 ± 0.22, the LV -dP/dt was (559.38 ± 97.37) mm Hg/ s, the LVEDP was (12.55 ± 2.87) mm Hg, and the NO content was (138.79 ± 7.23) nmol/ mL. For the above mentioned parameters, there was significant difference between group A and group B (P lt; 0.05), and between group B and group C (P lt; 0.05). Conclusion BMSCs transplantation can improve the cardiac function of diabetic rats. Its possible mechanismmay be related to the activation of APPL1 signaling pathway and the increase of NO content.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • REPAIR OF SPINAL CORD INJURY WITH RATS’ UMBILICAL CORD MSCs

    Objective To study the growth characteristics of umbil ical cord MSCs (UCMSCs) in vitro and its effect on the nerve regeneration after spinal cord injury (SCI). Methods UCMSCs isolated from pregnant rats umbil ical cord were cultured and purified in vitro. Sixty female Wistar rats weighing (300 ± 10) g were randomized into three groups (n=20per group). UCMSCs group (group A) in which UCMSCs suspension injection was conducted; DMEM control group (groupB) in which 10% DMEM injection was conducted; sham group (group C) in which the animal received laminectomy only.Establ ish acute SCI model (T10) by Impactor model-II device in group A and group B. The recovery of the lower extremity was observed using BBB locomotor scoring system, neurofilament 200 (NF-200) immunofluorescence staining was performed to detect the neural regeneration, and then the corticospinal tract (CST) was observed using the biotinylated dextran amine (BDA) tracing. Results Cultured UCMSCs were spindle-shaped fibrocyte-l ike adherent growth, swirl ing or parallelly. The USMSCs expressed CD29, but not CD31, CD45, and HLA-DR. The BBB score was higher in group A than group B 4, 5, and 6 weeks after operation, and there was a significant difference between two groups (P lt; 0.05). The BBB scores at different time points were significantly lower in groups A and B than that in group C (P lt; 0.05). UCMSCs was proved to survive and assemble around the injured place by frozen section of the cords 6 weeks after injury. NF-200 positive response area in groups A, B, and C was (11 943 ± 856), (7 986 ± 627), and (13 117 ± 945) pixels, respectively, suggesting there was a significant difference between groups A, C and group B (P lt; 0.05), and no significant difference was evident between group A and group C (P gt; 0.05). BDA anterograde tracing 10 weeks after operation demonstrated that more regenerated nerve fibers went through injured area in group A, but just quite few nerve fibers in group B went through the injuried cavity. The ratios of regenerative axons amount to T5 axons in group A and group B were smaller than that of group C (P lt; 0.05). Conclusion UCMSCs can prol iferate rapidly in vitro, survive and differentiate to neurons after being grafted into injured spinal cord. The transplantation of UCMSCs is effective in promoting functional recovery and axonal regeneration after SCI.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • EFFECTS OF DEMINERALIZED BONE MATRIX MODIFIED WITH TYPE II CADHERIN ECTODOMAIN ON ADHESION AND OSTEOGENIC DIFFERENTIATION OF BMSCs

    Objective To evaluate the adhesion, prol iferation and osteogenic differentiation of rabbit BMSCs after cultured on freeze-dried demineral ized bone matrix (FDBM) modified with type II cadherin ectodomain (Cad- II). Methods BMSCs isolated from 10 Japanese white rabbits (male and female, 4-week-old, 0.61-0.88 kg) were cultured. The second generation of BMSCs (cell density 1 × 106 /mL) were seeded onto the Cad-II modified allogenic FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro. The densities of seeded cells, the adhesion rate and their ALP activity were measured. The complex was observed through inverted phase contrast microscope and scanning electron microscope to evaluate the interaction between cells and FDBM. Another group of second generation of BMSCs (cell density 5 × 105 /mL) were seeded onto the Cad-II modified FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro too. The ALP activity and osteocalcin immunohistochemical was measured. Results There was no significant difference in cell prol iferation between experimental group and control group. The adhesion rate of cells in the experimental group was 87.41% ± 5.19%, higher than that in the the control group 35.56% ± 1.75% (P lt; 0.01); the densities of seeded cells reached 5.0 × 105, showing significant difference compared with the control group (2.6 × 104, P lt; 0.05). Inverted phase contrast microscope showed that in the experimental group, more cultured BMSCs pasted in the hole and edge of the scaffold than that in the control group. HE staining showed the densities of seeded cells in the experimental group was higher than that in the control group. Scanning electron microscope showed that in the experimental group, a lot of cultured BMSCs adhered, spreaded in the scaffold, in the control group only a few BMSCs unevenly distributed in the scaffold. After 7 days of culture, the cultured BMSCs on modified FDBM expressed higher ALP activity; after 14 days of culture, the ALP activity (29.33 ± 1.53) was higher than that cultured on unmodified FDBM (18.31 ± 1.32), the positive rates of osteocucl in were 83% ± 7% in the experimental group and 56% ± 7% in the control group, showing significant difference (P lt; 0.01). Conclusion Cad-II enhanced cell adhesion to FDBM and promoted BMSCs differentiate to osteoblast, but no obvious effects were observed in cell prol iferation.

    Release date:2016-09-01 09:06 Export PDF Favorites Scan
  • IN VITRO STUDY ON MULTIPLE DIFFERENTIATION POTENTIAL OF SWINE SYNOVIUM-DERIVED MSCs

    To study the method of isolating and culturing synovium-derived MSCs (SMSCs), and to investigate its multiple differentiation potential in vitro. Methods Three 2-month-old Changfeng hybrid swines weighing 8-10 kg (male and female) were used. SMSCs were harvested from the synovium of swine knee joints and cultured in vitro. When the SMSCs at passage 3 reached confluence, basic culture medium was removed, and the multi ple differentiationpotential of SMSCs was demonstrated in specific induction media (experimental group). The cells at passage 3 cultured with basic culture medium served as control group. After 21 days of chondrogenic differentiation, the cells underwent toluidine blue staining, immunohistochemistry staining and real-time fluorescence quantitative PCR detection. After 10 and 21 days of osteogenic differentiation, the cells underwent ALP staining and Al izarin red staining, respectively. After 21 days of adipogenic differentiation, the cells underwent Oil red O staining. Results SMSCs displayed long and thin or polygonal morphology 24 hours after culture. They prol iferated fast 48 hours after culture and presented large number of spindle-shaped cells with few globular cells 72 hours after culture. For the experimental group 21 days after chondrogenic induction, the cells were positive for toluidine blue staining with the formation of Aggrecan outside the cells; the immunohistochemistry staining revealed the expression of Col II; the real-time fluorescence quantitative PCR detection showed that the expressions of Col II A1, Aggrecan and SOX9 mRNA of the experimental group were greater than that of control group (P lt; 0.05). The cells were positive for ALP staining 10 days after osteogenic induction, and positive for Al izarin red staining 21 days after osteogenic induction, with the formation of calcium nodules. Oil red O staining displayed the formation of l i pid droplets inside the cells 21 days after adi pogenic induction. For the control group, the results of all the staining assays were negative except the ALP staining presenting with sl ight positive result. Conclusion SMSCs can be isolated from knee joint of swine and proliferate and differentiate into osteogenic, adi pogenic and chondrogenic cells in vitro. SMSCs may be a promising source of seed cells for tissue engineering.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • DIFFERENTIATION OF INTERVERTEBRAL NUCLEUS PULPOSUS-LIKE CELLS FROM hBMSCs

    Objective To compare the molecular phenotype of human intervertebral disc cells and articular chondrocytes and to analyze whether hBMSCs can differentiate into both chondrocytes and nucleus pulposus cells after combined induction of TGF-β3 and BMP-7 in vitro. Methods The cells with the characteristics of hBMSCs were isolated from marrow aspirates of the volunteer donors’ il iac crest. Human bone marrow was removed and fractionated, and adherent cell cultures were establ ished. The 4th passage cells were then translated into an aggregate culture system in a serum-free medium. The pellet cultures of hBMSCs were divided into four groups: 10 ng/mL TGF-β3 group (group A), 200 ng/mL BMP-7 group (group B), combination group of TGF-β3 and BMP-7 (group C) and blank group as the control (group D). Histological observation, RT-PCR and RQ-PCR were appl ied to measure the expressions of collagen type I, II, X, aggrecan and SOX9 on the 4th and 21st day after cell induction, respectively. Results As was shown by histological observation, the induced cells expressed the feature of chondrocytes in morphology and ECM in groups A and C on the 21st day after the culture. And the collagen type II was positive after staining in groups A and C. The cell morphology of the induced cells in groups B and C had no obviouly changed. PCR detection showed that the expressions of SOX9, aggrecan, collagen type I, II in groups A and C at 21st day were more increased than those at 4th day (P lt; 0.05). The only expressions of collagen type I in groups B and D at 21st day were more increased than those at 4th day (P lt; 0.05). The expressions of collagen type X only was positive in group A. Conclusion Combination of TGF-β3 and BMP-7 can make the differentiated cells from hBMSCs much closer to intervertebral disc cells, so it perhaps could provide seed cells for intervertebral disc tissue engineering.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • PRELIMINARY STUDY ON BIOLOGICAL PRINTING OF hBMSCs

    Objective To establ ish a two-dimensional biological printing technique of hBMSCs so as to control the cell transfer process and keep cell viabil ity after printing. Methods Bone marrow (5 mL) was obtained from healthy volunteer. The hBMSCs were regularly subcultured to harvest cells at passage 2, which were adjusted to the single cell suspensionat a density of 1 × 106/mL. The experiment was divided into 3 groups: printing group 1 in which cells underwent propidium iodide (PI) fluorescent label ing, then were transferred by rapid prototype biological printer (interval in x-axis 300 μm, interval in y-axis 1 500 μm), and laser scanning confocal microscope was appl ied to observe cell fluorescence; printing group 2 in which cells received no PI label ing and were cultured for 2 hours after transfer, Live/Dead viabil ity Kit was adopted to detect cell viabil ity and laser scanning confocal microscope was appl ied to observe cell fluorescence; half of the cells in printing group receiving no Live/Dead viabil ity Kit detection were cultured for 7 days, then inverted microscope was used to observe cell morphology, routine culture was conducted after the adherence of cells, the growth condition of cells was observed dynamically; control group in which steps were the same as the printing group 2 except that cell suspension received no printing. Results Laser scanning confocal microscope observation on the cells in printing group 1 revealed the “cell ink droplets” were distributed regularly and evenly in the two-dimensional layer and each contained 15-35 cells, meeting the requirement of designing two-dimensional cell printing. The cells in printing group 2 went through cell viabil ity test, laser scanning confocal microscope observation showed the fluorescence of cells 30 minutes after cell incubation. There was no significant difference between the control group and the printing groups in terms of cell viabil ity. The printed cells presented normal adherence, good morphology and good growth state 7 days after routine culture. Conclusion Biological printing technique can real ize the oriented, quantificational and regulardistribution of hBMSCs in the two-dimensional plane and lays the foundation for the construction of three-dimensional cellprinting or even organ printing system.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • RECENT PROGRESS OF BMSCs ACTING AS SEEDING CELL FOR TISSUE ENGINEERED CARTILAGE

    【Abstract】 Objective To review the recent progress of BMSCs acting as seeding cell for tissue engineeredcartilage. Methods The recent ten years l iterature about BMSCs acting as seeding cell for tissue engineered cartilage was extensively reviewed. Results Scaffold provided an optimal environment for the growth of BMSCs. Cytokine and gene del ivery could promote BMSCs to differentiate toward chondrocytes. All of them played important roles in the field of cartilage tissue engineering. Conclusion The improvement of three-dimensional scaffolds, the rational use of cytokine, and the enhancement of gene del ivery will promote the development of cl inical cartilage reconstruction.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
24 pages Previous 1 2 3 ... 24 Next

Format

Content