ObjectiveTo explore the application value of artificial intelligence in medical research assistance, and analyze the key paths to achieve precise execution of model instructions, improvement of model interpretation completeness, and control of hallucinations. MethodsTaking esophageal cancer research as the scenario, five types of literature including treatises, case reports, reviews, editorials, and guidelines were selected for model interpretation tests. The model performance was systematically evaluated from five dimensions: recognition accuracy, format correctness, instruction execution precision, interpretation reliability, and interpretation completeness. The performance differences of Ruibing Agent, GPT-4o, Claude 3.7 Sonnet, DeepSeek V3, and DouBao-pro models in medical literature interpretation tasks were compared. ResultsA total of 1875 tests were conducted on the five models. Due to the poor recognition accuracy of the editorial type, the overall recognition accuracy of Ruibing Agent was significantly lower than other models (92.0% vs. 100.0%, P<0.001). In terms of format correctness, Ruibing Agent was significantly better than Claude 3.7 Sonnet (98.7% vs. 92.0%, P=0.002) and GPT-4o (98.7% vs. 78.9%, P<0.001). In terms of instruction execution precision, Ruibing Agent was better than GPT-4o (97.3% vs. 80.0%, P<0.001). In terms of interpretation reliability, Ruibing Agent was significantly lower than Claude 3.7 Sonnet (84.0% vs. 92.0%, P=0.010) and DeepSeek V3 (84.0% vs. 94.7%, P<0.001). In terms of interpretation completeness, the median scores of Ruibing Agent, GPT-4o, Claude 3.7 Sonnet, DeepSeek V3, and DouBao-pro were 0.71, 0.60, 0.85, 0.74, and 0.77, respectively. ConclusionRuibing Agent has significant advantages in terms of formatted interpretation of medical literature and instruction execution accuracy. In the future, it is necessary to focus on optimizing the recognition ability of editorial types, strengthening the coverage ability of core elements of various types of literature to improve interpretation completeness, and improving content reliability through optimizing the confidence mechanism to ensure the rigor of medical literature interpretation.
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. ResultsTaking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.