Objective To study the curative effects of keloid by operation combined with postoperative β radiation and silicone gel sheeting. Methods From 1996 to 2002, 598 patients with keloid(243 males, 355 females, aging 15-55 years with an average of 28.6 years) were treated by integrated therapy. Their disease courses were from 6 months to 6 years. The keloid area ranged from 1.0 cm×1.5 cm~8.0 cm×15 cm. First, keloid was removed by operation, and then the wounds weresutured directly(group suture) or covered with skin graft(group graft). In groupsuture, the operational sites were managed by β ray radiotherapy 24-48 hours after operation. The total doses of radiation were 12-15 Gy, 5 times 1 week(group suture A) and 10 times 2 weeks (group suture B). Radiotherapy was not taken until stitches were taken out in group graft, and then the same methods were adopted as group suture B. After radiotherapy, silicone gel sheeting was used in 325 cases for 3-6 months. Results All patients were followed up for 12-18 months. (1) The overall efficacy was 91.3% in group suture A(n=196), and 95.8% in group suture B (n=383), respectively. There was significant difference between the two groups(Plt;0.01). (2) Radiotherapy was of no effect in 6 cases of group graft(n=19). (3) Silicone gel sheeting had effectivenessin 185 cases. Silicone gel sheeting had no obvious effect on the overall efficacy, but it could improve the quality of texture and color of skin. Conclusion By use of integrated methods to treat keloid, if the wound can be sutured directly, skin grafting should not be adopted. The results in group suture B are better than those in group suture A; silicone gel sheeting should be used as possible.
ObjectiveTo investigate the effectiveness of internal mammary artery perforator (IMAP) propeller flap repair combined with radiotherapy for chest keloid in female patients.MethodsBetween January 2015 and December 2016, 15 female patients with chest keloids were treated, aged 28-75 years (mean, 45.2 years). The keloid disease duration was 1-28 years (median, 6 years). The causes of disease included secondary keloid caused by folliculitis in 7 cases, cardiac surgery in 4 cases, skin abrasion in 2 cases, mosquito bite in 1 case, and unknown etiology in 1 case. The size of keloid ranged from 5 cm×3 cm to 17 cm×6 cm. The IMAP propeller flaps were used to repair the defects after chest keloid excision. The size of flaps ranged from 7 cm×5 cm to 14 cm×8 cm. The donor sits were sutured directly. The routine radiotherapy was performed after operation.ResultsAll IMAP propeller flaps survived well, and the donor sites healed by first intention. All 15 patients were followed up 12-24 months (mean, 16 months). No telangiectasia or incision dehiscence occurred. No radiation-related carcinogenesis occurred during follow-up. The patients were satisfied with the breast shape and symmetry after operation. The symptoms of pain and itching relieved at keloid area in 13 cases (86.7%), with no obvious recurrence of keloid at the donor site and the primary site. Only 2 cases (13.3%) recurred and were treated with continuously conservative treatment.ConclusionIMAP propeller flap is an ideal reconstruction method for repairing the wounds after chest keloid excision in female patients, which can preserve the good breast shape. The IMAP propeller flap repair combined with early postoperative radiotherapy can effectively reduce the recurrence rate, and the effectiveness is satisfactory.
Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.
Objective To investigate the relationship between p53 codon 72 polymorphism and susceptibility to keloid. Methods The p53 genotypes were detected by polymerase chain reactionreverse dot blot(PCRRDB) and DNA direct sequencing among 15 healthy controls and 15 patients with keloid. Results The frequency of the Proallele(P=0.035) and Pro/Pro genotype(P=0.030) in patients was significantly higher than that in the controlls. There was no significant difference in the frequency of Pro/Arg and Arg/Arg genotypes between patients and controls. Conclusion The p53 gene codon 72 polymorphism may play a role in susceptibility to keloid.
Objective To study the effect of myofibroblast on the development of pathological scar. Methods From 1998 to 2000, 14 cases of keloid(k), 13 cases of hypertrophic scar(HS), and 7 cases of scar were studied through immunohistochemistry and electronical microscope. Results Myofibroblasts were often observed in the hypertrophic HS by electronical microscope, but no myofibroblast was observed in the K and NS. αSMactin was expressed in fibroblast of HS, but was not expressed in K and NS. Conclusion Myofibroblast may play a role in the development of hypertrophic scar. The difference between the absence of myofibroblast in keloid and the invasion of keloid deserves further study.
Objective To detect gene mutations of Fas gene death domain (exons 7-9) in 2 Chinese keloid pedigrees and to investigatethe significance of Fas gene mutations in the keloid formation.Methods The samples were selected from keloid pedigrees A and B in 2005. The polymerase chainreaction and DNA sequencing analysis technique were used to detect the sequenceof exons 7-9 of Fas gene from keloid tissues of 2 male patients in pedigree A,their peripheral vein blood and their surrounding normal skin served as their own contrast, their spouses’ peripheral vein blood served as normal contrast, the peripheral vein blood of 2 patients in pedigree B served as a contrast between different keloid pedigrees.Results No gene mutations and single nucleotidepolymorphism in Fas gene exons 7, 8 were found in all samples from pedigrees A and B. But point mutations and single nucleotide polymorphism in Fas gene exon 9were identified in 11 bp and 53 bpin 2 keloid tissue samples from Chinese keloid pedigree A.Conclusion Fas gene point mutations maybe indicate some relations in Fas protein function and keloid formation.
Objective To build animal models of keloid by method of tissue engineering and to discuss the feasibility of using it in clinical and lab researches. Methods Fibroblasts(FB) were isolated from keloids and cultured. The seventh and eighth generation of the cultured FBs were inoculated into the copolymers of polylactic acid and polyglycolic PLGA. After being cultured in rotatory cell culture system (RCCS)for 1 week,the FB was transplanted into athymic mice. The specimens were obtained 4 weeks and 8 weeks and examined histologically. Results All mice survived.The collagen patterns of all keloids were pressed in every specimen obtained 8 weeks. Fibrocytes andFB were observed in specimens by electronic microscope. There were abundent rough endoplasmic reticulum (RER) in FB, which indicated that FB’s capability of synthesizing and secreting collagen was preserved and the cellular characteristicwas remained. Conclusion There is a good affinity between PLGAand FB. The composition of PLGA and FB can form keloids in athymic mice,so that it deserves further researching and developing.
Objective To detect the expression of heat shock protein 47 mRNA in pathological scar tissue by using real-time fluorescent quantitative reversetranscription-polymerase chain reaction (RT-PCR). Methods The tissues of normal skin(n=6), hypertrophic scar(n=6) and keloid(n=6) were adopted, which were diagnosised by Pathology Department. Based on fluorescent TaqMan methodology, the real-time fluorescent quantitative RT-PCR were adopted to detect the expression ofheat shock protein 47 mRNA. Results Compared with normal skin tissue(0.019±0.021)×105, the expressions of heat shock protein47 cDNA of hypertrophic scar tissue(1.233±1.039)×105 and keloid tissue(1.222±0.707)×105 were higher, being significant differences(Plt;0.05). Conclusion A fluorescent quantitative method was successfully applied to detecting the expression of heat shock protein 47 mRNA. Heat shock protein 47 may play an important role in promoting the formation of pathological scar tissue.
Keloids are benign skin tumors resulting from the excessive proliferation of connective tissue in wound skin. Precise prediction of keloid risk in trauma patients and timely early diagnosis are of paramount importance for in-depth keloid management and control of its progression. This study analyzed four keloid datasets in the high-throughput gene expression omnibus (GEO) database, identified diagnostic markers for keloids, and established a nomogram prediction model. Initially, 37 core protein-encoding genes were selected through weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the centrality algorithm of the protein-protein interaction network. Subsequently, two machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) and the support vector machine-recursive feature elimination (SVM-RFE) were used to further screen out four diagnostic markers with the highest predictive power for keloids, which included hepatocyte growth factor (HGF), syndecan-4 (SDC4), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), and Rho family guanosine triphophatase 3 (RND3). Potential biological pathways involved were explored through gene set enrichment analysis (GSEA) of single-gene. Finally, univariate and multivariate logistic regression analyses of diagnostic markers were performed, and a nomogram prediction model was constructed. Internal and external validations revealed that the calibration curve of this model closely approximates the ideal curve, the decision curve is superior to other strategies, and the area under the receiver operating characteristic curve is higher than the control model (with optimal cutoff value of 0.588). This indicates that the model possesses high calibration, clinical benefit rate, and predictive power, and is promising to provide effective early means for clinical diagnosis.
OBJECTIVE: To investigate the expression and distribution of platelet derived growth factor receptor-beta(PDGFR-beta) in normal skin and keloid and to discuss its biological function in keloid formation. METHODS: 1. To detect the expression and distribution of PDGFR-beta in normal skin and keloid tissue by immunohistochemistry; 2. To detect the receptor expression in vitro by Flow cytometry (FCM); 3. To detect the subcellular distribution of receptor by Laser confocal microscope. RESULTS: 1. Immunohistochemistry showed that normal skin and keloid tissue were almost the same in expression but different in distribution of PDGFR-beta; 2. There was more expression of PDGFR-beta in normal fibroblasts than that in keloid fibroblasts in vitro by FCM; 3. Laser confocal microscope revealed that the PDGFR-beta concentrated on the surface of cell membrane in keloid fibroblasts, but in normal skin fibroblasts, the receptors were coagulated on the nuclear membrane and intranucleus. CONCLUSION: Compared with the fibroblasts in vivo, there was a difference of the PDGFR-beta expression in fibroblasts in vitro, more expression of PDGFR-beta in normal fibroblast than that in keloid fibroblast in vitro; and the subcellular distribution of PDGFR-beta was different in normal skin and keloid fibroblasts. The characteristics of the expression and distribution of PDGFR-beta in keloid may contribute to the formation of keloid.