Objective To construct small hairpin RNA (shRNA) expression plasmid targeting rat opticin gene.Methods Four pairs of opticin oligonucleotides were synthesized and inserted into the plasmid vector, resulting into four plasmids: shRNA-1, shRNA-2, shRNA-3 and shRNA-4. Then the four constructed shRNA expression vectors and empty vector were transfected into rat ciliary non-pigment epithelium (NPE) cells by lipofectmaine 2000. Nontransfected NPE cells were set as control group.The expression of opticin mRNA and protein were measured by Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot respectively.Results The opticin mRNA expression of the shRNA-1,shRNA-2,shRNA-3,shRNA-4 group were decreased compared with the control group (F=10.239,P=0.000);the inhibitory rate were 85.7%,62.87%,54.87% and 48.77% respectively.The opticin protein expression of the shRNA-1,shRNA-2,shRNA-3,shRNA-4 group were also decreased compared with the control group (F=17.870,P=0.000);the inhibitory rate were 78.7%,34.6%,31.1% and 16.8% respectively.Conclusions The shRNA-1 expression plasmid has most potent inhibitory effect on opticin expression in rat ciliary NPE cells.
Objective To observe the inhibition of LipofectamineTM2000 (LF2000)mediated pSUPER recombinant plasmid expressing small interference RNA targeting hypoxia-induced factor (HIF)-1alpha;(pSUPERsiHIF-1alpha;) on retinal neovascularization in mice. Methods pSUPERsiHIF-1alpha; recombinant plasmid was created. Forty-eight (seven-day-old) C57BL/6J mice were randomly divided into a normal group, the control group, empty vector group and gene therapy group with 12 mice in each group. Mice in the normal group were kept in normal room air, while the other three groups retinal neovascularization was induced by hypoxia. The mice in control group were not treated. The mice in the vector group received intravitreous injection of pSUPER and LF2000 (1 mu;l), and the gene therapy group received pSUPERsiHIF-1alpha; and LF2000 (1 mu;l)one day before being returned to normal room air.Fluorescent angiography was used to assess the vascular pattern. The proliferative neovascular response was quantified by counting the nuclei of new vessels extending from the retina into the vitreous in cross-sections.HIF-lalpha;and vascular endothelial growth factor (VEGF) levels in retinas were measured by immune histochemical staining method and reverse transeriptase-polymerase chain reaction (RT-PCR). Results Fluorescent angiography showed radial branching pattern vessels in the normal group and distorted large vessels, obstructed capillaries, many neovascular tuffs, fluorescence leakage in the peripheral retina in the control group and vector group. The gene therapy group demonstrated a significant reduction in neovascular tufts and fluorescence leakage compared with the control group and the vector group. The number of vascular cell nuclei extending breaking through the internal limiting membrane(ILM) of control group and vector group increased significantly compared with normal group (F=5850.016,P<0.05), while obviously decreasing in the gene therapy group compared with control group (F=3012.469,P<0.05). Immunohistochemical staining showed the expression of HIF-1alpha; protein in nucleus and VEGF protein in cytoplasm. The expression of HIF-1alpha; protein in retina was negative, while VEGF protein was weakly positive in normal group. The expression of HIF-1alpha; and VEGF protein were both positive in control group and vector group, while weakly positive in gene therapy group. The Results of RT-PCR showed that the expression of HIF-1alpha; mRNA in retina was increased significantly in control group and vector group as compared with normal group (F=3102.326,P<0.05), while decreasing significantly in gene therapy group as compared with control group (F=3336.425,P<0.05). Conclusion Retinal neovascularization in the mice is significantly inhibited by intravitreal injection of LF2000-mediated recombinant plasmid pSUPERsiHIF-1alpha;.
ObjectiveTo observe the inhibitory effect of lentivirus mediated small interference RNA (siRNA) targeting cyclic adenosine monophosphate responsive element binding protein 1 (CREB1) on retinal neovascularization (RNV) in mice. MethodsCREB1 siRNA construct was created, screened and packaged to produce CREB1 RNAi-lentivirus. One hundred and forty (5-day-old) C57BL/6J mice were randomly divided into 4 groups including normal group, oxygen induced retinopathy (OIR) group, empty vector group and CREB1 therapy group with 35 mice in each group. Mice in the normal group were kept in normal room air, while in the other three groups retinal neovascularization was induced by hypoxia on postnatal day 7 (P7). The mice in the OIR group were not treated. The mice in the vector group received intravitreal injection of lentivirus-green fluorescent protein (lenti-GFP, 1 μl), and the CREB1 therapy group received CREB1 RNAi-lentivirus (1 μl) on P5.The proliferative neovascular response was quantified by counting the vascular cell nuclei extending breaking through the internal limiting membrane (ILM) and fluorescent angiography. The areas of RNV and non-perfusion region were calculated. The expression of CREB1, phosphorylated-CREB1 (P-CREB1) and vascular endothelial growth factor (VEGF)-A levels, Akt and phosphoinositide 3-kinases (PI3K) in retinas were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. ResultsThe number of vascular cell nuclei breaking through the ILM of the OIR group and the empty vector group increased significantly compared with the normal group (P<0.05), while obviously decreased in the CREB1 therapy group compared with the OIR group and the empty vector group(P<0.05). The area of RNV and non-perfusion region of the OIR group and the empty vector group increased significantly compared with the normal group, while obviously decreased in the CREB1 therapy group compared with the OIR group and the empty vector group. The difference of area of RNV and non-perfusion region among 4 groups were significant (F=67.220, 110.090; P<0.05). The mRNA expression of CREB1 and protein expression of P-CREB1, the mRNA and protein expression of VEGF-A, Akt, PI3K in the retina were increased significantly in the OIR group and the empty vector group as compared with the normal group, while decreased significantly in the CREB1 therapy group as compared with the OIR group and the empty vector group. The difference of mRNA expression of CREB1, VEGF-A, Akt, PI3K in the retina among 4 groups were significant (F=6.087, 5.464, 6.191, 8.627; P<0.05). The protein expression of P-CREB1, VEGF-A, Akt, PI3K in the retina among 4 groups were significant (F=162.944, 13.861, 19.710, 22.827; P<0.05). ConclusionRNV in the mice is significantly inhibited by intravitreal injection of lentivirus-mediated CREB1 down-regulation.
Objective To investigate the inhibitory effects of fms-like typrosine kinase receptor sFlt-1 on retinal neovascularization (RNV).Methods Recombinant lentivirus sFlt-1(2-3)and sFlt-1(2-4)expressing the sFlt-1 (2-3) and (2-4) immunoglobulinlike regions of sFlt-1 were constructed. 96 seven-day-old C57/6J mice were randomly divided into 4 groups with 24 mice in each group. Group 1: normal control; group 2: experimental control; group 3: sFlt-1(2-3); group 4: sFlt-1(2-4).The mice in group 2-4 were exposed to hyperoxia with (75plusmn;2)% O2 for 5 days and then returned to normoxia with 21% O2;the mice received an intravitreal injection with 1 mu;l virus of empty vector, sFlt-1(2-3),or sFlt-1(2-4),respectively. Five days later, all mice underwent perfusion fluorecein angiography and retinal wholemont was made to observe the changes of retinal vessels; retinal sections were stained by hematoxylin and eosin and RNV endothelium cell nucleus were counted; vascular endothelial growth factor(VEGF) and VEGF receptor-2 (KDR/Flk-1) protein were measured by Western blot.Results Seventeen days after birth, the retinal area of fluorescein leakage and RNV, RNV nucleus which breaking through inner limiting membrane in group 3 and 4 were smaller or less than that in group 2(P<0.01); while VEGF protein didnprime;t changed much (P>0.05)the expression of KDR/Flk-1 decreased significantly (P<0.01). Conclusion sFlt-1(2-3)and sFlt-1(2-4)can inhibit the formation of oxygen-induced RNV,the former virus has a better effect.
Objective To study efficiency and security of the recombinant adenoviralmediated gene transfer to the donor heart during the heart transplantation. Methods A total of 140 healthy male Wistar rats,aged 10 weeks, weighing 200250 g, were equally divided into the donor group and the recipient group, and then 70 rats in the recipient group were randomly andequally divided into 2 subgroups: the gene transfer group and the control group. The rat model of heterotopic heart transplantation(Abdomen)was developed, the donor hearts were removed and their coronary arteries were perfused with 800 μlof the recombinant adenoviral vectors encoding the β-galactosidase gene(Ad-LacZ). The grafts were stored in the 4℃ cold saline solution for 30 minutes, and then the syngeneic transplant was performed. In the control group, saline of tales doses was perfused. The donor hearts were harvested at 3, 5, 7, 14, and 28days (n=7)after transplantation, and the β-galactosidase activity was assessed by the X-gal staining. At 28 days the major organs of the recipients were tested by the histopathological analysis and the polymerase chain reaction of the adenoviral E1A sequences. Results The successful gene transfer of the βgalactosidase gene was demonstrated in the adenovirus-perfused hearts, with no staining in the control group. The gene expression reached a peak level at 3, 5 and 7 days, and the averaged numbers of the total βgalactosidase positive staining cells per slice were 66.4±23.1, 91.3±32.4 and 68.7±22.7, respectively, with no significant difference between the groups (Pgt;0.05). At 14 days the gene expression gradually declined (32.1±13.9), and the significant difference was found when compared with that at 3, 5 and 7 days (Plt;0.05). At 28 days the cells positive for β-galactosidase were sparse (3.9±3.4), and the gene transfer was significantly less efficient compared with that at 3, 5, 7 and 14 days (Plt;0.05). The major organs of the recipients were not affected seriously at 28 days. No virus spread to other organs in this experimental protocol. Conclusion The ex vivo adenoviralmediated gene transfer intracoronarily to the donor heart during the heart transplantation is feasible and safe.
Objective To investigate the effect of B7-1 and IL-12 gene expression on the immunogenicity of hepatocellular carcinoma (HCC) HepG2 cells. Methods Plasmids encoding B7-1 and IL-12 molecules were retrovirally introduced into human HCC cells,empty vector as control. PBLs were cocultured with HepG2/B7-1,HepG2/IL-12 and HepG2/neo cells. Three days later,PBLs were submitted to specific cytotoxicity test and nonspecific cytotoxicity test against K562 cells by MTT assay.Results HLA-Ⅰ molecules on PBLs were detected by FACS.HLA-Ⅰ molecules expressing on PBL cocultured with HepG2/B7-1,HepG2/IL-12 cells were enhanced by 16.95% and 14.71% than those of HepG2/neo group, respectively(P<0.05). Specific cytotoxicity against HepG2/B7-1 cells was 12.5% higher than that of against HepG2/neo cell,while no increase in that of against HepG2/IL-12 cells. Cytotoxicities against K562 cells in HepG2/B7-1,HepG2/IL-12 groups were 19.38% and 14.78% higher than those of HepG2/neo group, but no significant difference between the first two groups.Conclusion B7-1 and IL-12 gene transfer could remarkably promote immunogenicity of hepatocellular carcinoma cells and induce b specific and nonspecific immunity against hepatocellular carcinoma in vitro.
Objective To investigate the inhibitory effects of 15-lipoxygenase-1 (15-LOX-1) gene transfer on oxygen-induced retinal neovascularization in mice. Methods Ninety-six 7-day-old C57BL/6J mice were randomly divided into normal control group, oxygeninduced retinopathy (OIR) model group, gene treated group and empty vector group. The mice with their mothers were kept in (75plusmn;2) % 02 environment for 5 days and then returned to normoxia for 5 days to establish the OIR model. At postnatal day 12, the gene treated group received intravitreous injection of recombinant adenovirus (Ad) vector containing both enhanced green fluorescent protein (EGFP) and mouse 15-LOX-1 genes (Ad-15-LOX-1-EGFP) at 1 l, while the empty vector group received the same volume of recombinant Ad vector containing EGFP (Ad-EGFP). The expression of EGFP was observed on flat-mounted retina by fluorescence microscopy 2 days after intravitreous injection of Ad-15-LOX-1-EGFP. At postnatal day 17, the efficacy of 15-LOX-1 gene transfer on retinal tissue was detected by immunofluorescence staining, real-time polymerase chain reaction and Western blot. The changes of retinal vessels, relative retinal non-perfusion and neovascularization areas were evaluated by fluorescein isothiocyanate-dextran fluorescein angiography on flatmounted retina. The number of endothelium cell nuclei breaking through the inner limiting membrane (ILM) was counted on hematoxylin and eosin-stained retinal section. Results Two days after intravitreous injection of Ad-15-LOX-1-EGFP, the expression of EGFP had been seen by fluorescence microscopy on Flat-mounted retina. Immunofluorescence staining of retinal section revealed that 15-LOX-1 expression was primarily in the outer plexiform layer, inner nuclear layer and ganglion cell layer of retina. The 15-LOX-1 protein and mRNA expression levels were higher in gene treated group than those in OIR model group and empty vector group (tprotein=22.74 and 24.13 respectively.tmRNA=12.51 and 13.40 respectively; P<0.01). The relative retinal non-perfusion and neovascularization areas were significantly smaller in gene treated group than those in OIR model group and empty vector group (tnon-perfusion=16.22 and 14.31 respectively.tneovascularization=9.97 and 9.07 respectively; P<0.01), and the number of endothelium cell nuclei breaking through the ILM in gene treated group was obviously lower than the other two groups (t=14.25 and 11.62 respectively,P<0.01). Conclusion 15-LOX-1 gene transfer can decrease the oxygen-induced retinal non-perfusion areas and inhibit the retinal neovascularization in mice.
With the advancement of molecular biology technology and the development of genetics, the viral vector system has been continuously improved and optimized. The viral vector system has gradually become one of the best carriers in ophthalmic gene therapy. Adenovirus vector has the characteristics of transient expression and plays an important role in reducing corneal immune response. Lentiviral vector has the characteristics of stable and high efficiency and can be expressed slowly in the body for a long time.Adeno-associated virus vector has the characteristics of low immunogenicity, high efficiency and precision and can infect a variety of retinal cells. The combined use of adeno-associated virus vector and CRISPR-Cas9 provides new methods for precise treatment of ophthalmic genetic diseases. The advent of viral vectors has significantly increased the potential of gene therapy and has unparalleled advantages over traditional therapies. We have reason to believe that virus-based gene transduction technology will soon achieve clinical application in the near future, and a large number of difficult ophthalmic problems will be solved by then.
Abstract: Objective To assess the feasibility of transferring major histocompatibility complex (MHC) gene into the thymus to mitigate xenograft rejection. Methods By molecular cloning technique, we extracted and proliferated the-H-2K d gene from donor mice (MHC class Ⅰ gene of Balb/c mice) and constructed the expression vector plasmid of pCI-H-2K d. Twenty SD rats were selected as receptors, and by using random number table, they were divided into the experimental group and the control group with equal number of rats in each group. By ultrasoundguided puncture and lipofection method, the pCI-H-2Kd was injected into thymus of SD rats in the experimental group and meanwhile, empty vector plasmid of pCIneo was injected into thymus of SD rats in the control group. Subsequently, we transplanted the donor mice myocardium xenografts into the receptor rats, and observed the xenograft rejection in both the two groups. Results The survival time of the xenotransplanted myocardium in the experimental group was significantly longer than that in the control group (14.61±2.98 d vs. 6.40±1.58 d, t=-7.619,Plt;0.05). Microtome section of transplanted myocardium in the control group showed a relatively large amount of lymphocyte infiltration and necrosis occurred to most part of the transplanted myocardium, while microtome section of experiment group showed no lymphocyte infiltration and most of the cells of the transplanted myocardium were still alive. After mixed lymphocyte culture, the reaction of receptors to donor cells in the experiment group was obviously lower than that in the control group (t=4.758, P=0.000).After the count by flow cytometer, the xenoMHC molecules were expressed in the receptors’ thymus with a transfection efficiency of 60.7%. Conclusion Our findings suggest that xenograft rejection can be mitigated substantially by donor’s MHC gene transferring into receptor’s thymus. This may provide theoretical and experimental evidence for inducing xenotransplantation tolerance.
Objective To investigate the effects of recombinant adeno-associated virus type-2 (rAAV2) mediated delivery of pigment epitheliumderived factor (PEDF) on oxygen-induced retinal neovascularization (OIRNV) in mice. Methods A total of 22 C57/BL6 mice at the age of 3 days received intravitreal injections of 1 mu;l rAAV2-PEDF and rAAV2EGFP into the left eyes (experimental group) and the right eyes (control group). All mice were put into the oxygen box right after the injection to induce the OIRNV model.4 mice were sacrificed and PEDF protein in retina was measured by western blot at postnatal days 13 (P13). Twelve mice underwent retinal angiography with high molecular weight fluoresceindextran, and another 6 mice were sacrificed for retinal lectin immunohistochemistry staining at P17. Absolute and relative nonperfusion areas of retinal neovascularization were analyzed by Image-Pro Plus 5.1 software. Results The expression level of PEDF protein was higher in the experimental group than that in the control group.The absolute nonperfusion area was (0.96plusmn;0.22) mm2 in the experimental group and (1.96plusmn;0.34) mm2 in the control group; the difference between the two groups was significant(t=-8.554, P<0.01). The relative nonperfusion area was (8.64plusmn;1.52)% in the experimental group and (17.27plusmn;2.98)% in the control group with a significant difference between the two groups (t=-8.97, P<0.01).The absolute area of retinal neovascularization was (0.37plusmn;0.11) mm2 in the experimental group which was obviously higher than (1.26plusmn;0.38) mm2 in the control group (t=-7.8, P<0.01); the relative areas in experimental and control groups was (3.96plusmn;0.66)% and (11.45plusmn;2.06)%, respectively, whose difference is apparently(t=-8.51, P<0.01).The areas of retina neovascularization were (0.11plusmn;0.003) mm2 and (0.41plusmn;0.02) mm2 in the experimental and control groups, respectively, and the difference between the two groups was significant(t=-5.14, P<0.01).Conclusions PEDF protein can stably express in the mice retina after rAAV2-PEDF transfetion. rAAV2-PEDF can decrease the retinal non-perfusion areas and inhibit the retinal neovascularization in OIRNV mice.