west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Finite element" 27 results
  • Study on direct ventricular assist loading mode based on a finite element method

    To investigate the biomechanical effects of direct ventricular assistance and explore the optimal loading mode, this study established a left ventricular model of heart failure patients based on the finite element method. It proposed a loading mode that maintains peak pressure compression, and compared it with the traditional sinusoidal loading mode from both hemodynamic and biomechanical perspectives. The results showed that both modes significantly improved hemodynamic parameters, with ejection fraction increased from a baseline of 29.33% to 37.32% and 37.77%, respectively, while peak pressure, stroke volume, and stroke work parameters also increased. Additionally, both modes showed improvements in stress concentration and excessive fiber strain. Moreover, considering the phase error of the assist device's working cycle, the proposed assist mode in this study was less affected. Therefore, this research may provide theoretical support for the design and optimization of direct ventricular assist devices.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • An efficient and practical electrode optimization method for transcranial electrical stimulation

    Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • THREE-DIMENSIONAL FINITE ELEMENT INVESTIGATION OF LATERAL MASS SCREW FIXATION AND TRANSARTICULAR SCREW FIXATION IN LOWER CERVICAL SPINE

    Objective To establ ish sophisticated three-dimensional finite element model of the lower cervical spine and reconstruct lower cervical model by different fixation systems after three-column injury, and to research the stress distribution of the internal fixation reconstructed by different techniques. Methods The CT scan deta were obtained from a 27-year-old normal male volunteer. Mimics 10.01, Geomagic Studio10.0, HyperMesh10.0, and Abaqus 6.9.1 softwares were usedto obtain the intact model (C3-7), the model after three-column injury, and the models of reconstructing the lower cervical spine after three-column injury through different fixation systems, namely lateral mass screw fixation (LSF) and transarticular screw fixation (TSF). The skull load of 75 N and torsion preload of 1.0 N•m were simulated on the surface of C3. Under conditions of flexion, extension, lateral bending, and rotation, the Von Mises stress distribution regularity of internal fixation system was evaluated. Results The intact model of C3-7 was successfully establ ished, which consisted of 177 944 elements and 35 668 nodes. The results of the biomechanic study agreed well with the available cadaveric experimental data, suggesting that they were accord with normal human body parameters and could be used in the experimental research. The finite element models of the lower cervical spine reconstruction after three-column injury were establ ished. The stress concentrated on the connection between rod and screw in LSF and on the middle part of screw in TSF. The peak values of Von Mises stress in TSF were higher than those in LSF under all conditions. Conclusion For the reconstruction of lower cervical spine, TSF has higher risk of screw breakage than LSF.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • Design and analysis of shoulder type exoskeleton stretcher for individual soldier

    For the transportation process of rescuing wounded personnel on naval vessels, a new type of shoulder type exoskeleton stretcher for individual soldier was designed in this paper. The three-dimensional model of the shoulder type exoskeleton stretcher for individual soldier was constructed using three dimensional modeling software. Finite element analysis technique was employed to conduct statics simulation, modal analysis, and transient dynamics analysis on the designed exoskeleton stretcher. The results show that the maximum stress of the exoskeleton stretcher for walking on flat ground is 265.55 MPa, which is lower than the allowable strength of the fabrication material. Furthermore, the overall deformation of the structure is small. Modal analysis reveals that the natural frequency range of the exoskeleton stretcher under different gait conditions is 1.96 Hz to 28.70 Hz, which differs significantly from the swing frequency of 1 Hz during walking. This indicates that the designed structure can effectively avoid resonance. The transient dynamics analysis results show that the maximum deformation and stress of exoskeleton stretcher remain within the safety range, which meets the expected performance requirements. In summary, the shoulder type exoskeleton stretcher for individual soldier designed in this study can solve the problem of requiring more than 2 people to carry for the existing stretcher, especially suitable for narrow spaces of naval vessels. The research results of this paper can provide a new solution for the rescue of wounded personnel on naval vessels.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Angiodynamic and optical coupling analysis of skin tissue model under finite pressure

    The pulse amplitude of fingertip volume could be improved by selecting the vascular dense area and applying appropriate pressure above it. In view of this phenomenon, this paper used Comsol Multiphysics 5.6 (Comsol, Sweden), the finite element analysis software of multi-physical field coupling simulation, to establish the vascular tissue model of a single small artery in fingertips for simulation. Three dimensional Navier-Stokes equations were solved by finite element method, the velocity field and pressure distribution of blood were calculated, and the deformation of blood vessels and surrounding tissues was analyzed. Based on Lambert Beer's Law, the influence of the longitudinal compression displacement of the lateral light surface region and the tissue model on the light intensity signal is investigated. The results show that the light intensity signal amplitude could be increased and its peak value could be reduced by selecting the area with dense blood vessels. Applying deep pressure to the tissue increased the amplitude and peak of the signal. It is expected that the simulation results combined with the previous experimental experience could provide a feasible scheme for improving the quality of finger volume pulse signal.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
  • Research on simulation and optimal design of a miniature magnetorheological fluid damper used in wearable rehabilitation training system

    The goal of this paper is to solve the problems of large volume, slow dynamic response and poor intelligent controllability of traditional gait rehabilitation training equipment by using the characteristic that the shear yield strength of magnetorheological fluid changes with the applied magnetic field strength. Based on the extended Bingham model, the main structural parameters of the magnetorheological fluid damper and its output force were simulated and optimized by using scientific computing software, and the three-dimensional modeling of the damper was carried out after the size was determined. On this basis and according to the design and use requirements of the damper, the finite element analysis software was used for force analysis, strength check and topology optimization of the main force components. Finally, a micro magnetorheological fluid damper suitable for wearable rehabilitation training system was designed, which has reference value for the design of lightweight, portable and intelligent rehabilitation training equipment.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • A study on the predictive model of porous hyperelastic properties of human alveolar bone based on computed tomography imaging

    Alveolar bone reconstruction simulation is an effective means for quantifying orthodontics, but currently, it is not possible to directly obtain human alveolar bone material models for simulation. This study introduces a prediction method for the equivalent shear modulus of three-dimensional random porous materials, integrating the first-order Ogden hyperelastic model to construct a computed tomography (CT) based porous hyperelastic Ogden model (CT-PHO) for human alveolar bone. Model parameters are derived by combining results from micro-CT, nanoindentation experiments, and uniaxial compression tests. Compared to previous predictive models, the CT-PHO model shows a lower root mean square error (RMSE) under all bone density conditions. Simulation results using the CT-PHO model parameters in uniaxial compression experiments demonstrate more accurate prediction of the mechanical behavior of alveolar bone under compression. Further prediction and validation with different individual human alveolar bone samples yield accurate results, confirming the generality of the CT-PHO model. The study suggests that the CT-PHO model proposed in this paper can estimate the material properties of human alveolar bone and may eventually be used for bone reconstruction simulations to guide clinical treatment.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • Simulation model of tumor-treating fields

    Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm3. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL DIGITAL MODEL FOR REPAIR AND RECONSTRUCTION OF KNEE JOINT

    Objective To review recent advance in the application and research of three-dimensional digital knee model. Methods The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. Results The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. Conclusion With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • 3-D FINITE ELEMENT AND CLINICAL ANALYSES OF THE RECONSTRUCTION OF THE FIRST TO THIRD METATARSUS DEFECT WITH ILIUM

    Objective To investigate the effect of first to third metatarsus defect and the effect of reconstruction with ilium on foot function. Methods The first to third metatarsus defect was simulated in a 3D foot model and rebuilt by ilium. The maximal displacement and stress calculated by the method of finite elements were used as the index of estimation. Five cases treated from Mar. 1996 to Jan. 2003 with metatarsus defect rebuilding by free vascular iliac bone incorporating free flapwere evaluated. Results Foot function was affected largely by the defect of the first to third metatarsus. Compared with the normal foot, the maximal displacement was increased by 2.15 times and the maximal stress was increased by 2.12 times in 100% defected foot, and in 50%-defected foot maximal displacement and stress were increased by 1.65 times and 2.05 times respectively. Follow-up had been conducted for 1 to 2 years. All bones and flaps of the 5 cases survived (2 excellent, 2 good, and 1 passable) by function evaluation. Conclusion The first to third metatarsus defect should be repaired, and the method of transplanting iliac bone added by flap is effective. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content