Objective To develop a new method for a tissue engineered vascular graft by combining endothelial cells and an acelluarized allogenic matrix. Methods Acellularized matrix tubes were obtained by a 0.1% trypsin and 0 02% EDTA solution for 24 hours and 1% Triton X 100 for 176 hours, respectively. Endothelial cells were isolated from alloaorta and expanded in vitro. Finally, the inner surface of acellularized matrix was reseeded with endothelial cells. Acellularity and reseeding were analysed by light microscopy and scanning electron microscopy. Results The acellularization procedure resulted in an almost complete removal of the original cells and the loose three-dimensional (3D) matrix. The acellular matrix could be reseeded with expanded endothelial cells in vitro, and endothelial cells had the potential of spread and proliferation. Conclusion Acellular matrix produces by Tritoon X-100 and trypsin possesses satisfactory biocompatibility for allogenic endothelial cell. Vascular grafts can be generated in vitro by a combination of endothelial cells and allogenic acelluarized matrix.
OBJECTIVE: To review the role of matrix metalloproteinase-1 (MMP-1) in the course of healing in wounded skin. METHODS: The recent literatures on MMP-1 in skin wound repair were reviewed, which gave the insight into the local effect of MMP-1 during re-epithelialization. RESULTS: Following injury, basal keratinocytes, moving from the wound edge and interact with dermal matrix proteins in the wound bed, were induced to express MMP-1 in a specific space-time pattern. MMP-1 cleaved the collagen, thereby altering its structure and affinity by which the keratinocytes binded it. MMP-1 served a beneficial role in wound healing by facilitating the proliferation and movement of keratinocytes over the collagen-rich wound bed during re-epithelialization. CONCLUSION: MMP-1 expression of migrating keratinocytes directly influences the re-epithelialization during the course of healing of the wounded skin.
Objective To review the decellularized methods for obtaining extracellular matrix (ECM) and the applications of decellularized ECM scaffold in tissue engineering. Methods Recent and related literature was extensively and comprehensively reviewed. The decellularized methods were summarized and classified. The effects of different sterilization methods on decellularized scaffolds were analyzed; the evaluation criterion of extent of decellularization was put forward; and the application of decellularized ECM scaffold in different tissues and organs engineering field was summarized. Results The decellularized methods mainly include physical methods, chemical methods, and biological methods, and different decellularization methods have different effects on the extent of cell removal and ECM composition and structure. Therefore, the best decellularization method will be chosen according to the characteristics of the tissues and decellularization methods to achieve the ideal result. Conclusion It is very important to choose the appropriate decellularized method for preparing the biological materials desired by tissue engineering. The biological scaffolds prepared by decellularized methods will play an important role in tissue engineering and regenerative medicine.
OBJECTIVE To investigate the methods to fabricate repair materials of tissue engineered peripheral nerve with bioactivity of Schwann cells (SC). METHODS 1. The materials were made by dry-wet spinning process to fabricate PLA hollow fiber canal with external diameter of 2.3 mm, internal diameter of 1.9 mm, thickness of 0.4 mm, pore size of 20 to 40 microns, pore ratio of 70% and non-spinning fiber net with pore size of 100 to 200 microns, pore ratio of 85%. 2. SC were implanted into excellular matrix (ECM) gel to observe the growth of SC. 3. SC/ECM complex were implanted into non-spinning PLA fiber net to observe the growth of SC. 4. SC, SC/ECM and SC/ECM/PLA were implanted into PLA hollow fiber canal to bridge 10 mm defect of rat sciatic nerve. RESULTS 1. SC were recovered bipolar shape at 1 day after implantation, and could be survived 14 days in ECM gel. 2. After SC/ECM complex was implanted into PLA net, most of SC were retained in the pore of PLA net with the formation of ECM gel. SC could be adhered and grown on PLA fiber. 3. Most of SC in ECM gel could be survived to 21 days after transplantation. Survival cell numbers of SC/ECM and SC/ECM/PLA groups were obviously higher than SC suspension group. CONCLUSION Non-spinning PLA porous biodegradable materials with ECM is benefit for SC to be adhered and grown.
Objective To investigate the behavior of rat calvarial osteoblasts cultured on chitosan-gelatin/hydroxyapatite (CSGel/HA) composite scaffolds. Methods The rat calvarial osteoblasts (the 3rd passage) were seeded at a density of 1.01×106 cells/ml onto the CS-Gel/HA composite scaffolds having porosity 85.20%, 90.40% and 95.80%. Cell number was counted after cultured for 3 days,1 week, 2 weeks and 3 weeks. Cell proliferation, bone-like tissue formation, and mineralization were separately detected by HE, von Kossa histological stainingtechniques. Results The CS-Gel/HA composite scaffolds supported the attachmentof seeded rat calvarial osteoblasts. Cells proliferated faster in scaffold withhigher porosity 90.40% and 95.80% than scaffold with lower porosity 85.20%. The osteoblasts/scaffold constructs were feasible for mineral deposition, and bonelike tissue formation in 3 weeks. Conclusion This study suggests the feasibility of using CS-Gel/HA composite scaffolds for bone tissue engineering.
ObjectiveTo review the progress of cell sheet technology (CST) and its application in bone tissue engineering. MethodsThe literature concerning CST and its application was extensively reviewed and analyzed. ResultsCST using temperature-responsive culture dishes is applied to avoid the shortcomings of traditional tissue engineering. All cultured cells are harvested as intact sheets along with their deposited extracellular matrix. Avoiding the use of proteolytic enzymes, cell sheet composed of the cells and extracellular matrix derived from the cells, and remained the relative protein and biological activity factors. Consequently, cell sheet can provide a suitable microenvironment for the bone regeneration in vivo. With CST, cell sheet engineering is allowed for tissue regeneration by the creation of three-dimensional structures via the layering of individual cell sheets, be created by wrapping scaffold with cell sheets, or be created by folding the cell sheets, showing great potential in tissue engineered bone. ConclusionConstructing tissue engineered bone using CST and traditional method of bone tissue engineering will promote the development of the bone tissue engineering.
ObjectiveTo review the research progress of novel cross-linking methods applied in bio-derived materials. MethodsThe literature about the latest progress in the cross-linking methods of bio-derived materials was reviewed and analyzed. ResultsThe novel cross-linking methods of the bio-derived materials can be divided into chemical methods, physical methods, and biological methods, whose available application and cross-linking properties are greatly depended on their mechanisms. So proper methods should be developed to meet the various application requirements of the materials. A series of studies shows the feasibility and availability of the cross-linked bio-derived materials in the repair and reconstruction of the tissue. ConclusionBio-derived materials modified by novel cross-linking methods are proved to obtain excellent biocompatibility and tissue repair ability, better mechanical properties and degradation properties, and so on. Those methods provide researchers more choices to cross-linking materials, which are help to obtain the clinical tissue engineering products.
Objective To review the research progress of osteoblastextracellular matrix(ECM) and its application in bone tissue engineering. Methods The recentrelated literatures were extensively reviewed. Results The ECM was complex in its components. The configuration of cell and cell’s adhesion, migration, proliferation, and differentiation were subject to the ECM. The bioactivity of the tissue engineering products was revealed by ECM, which predicted the product’s efficiency in clinic application. Conclusion ECM has the potential to become the effective index in evaluating tissue engineered products.
【Abstract】Objective To investigate the expression of extracellular matrix metalloproteinase inducer(EMMPRIN),matrix metalloproteinase-1(MMP1),MMP9,tissue inhibitors of metalloproteinase-1(TIMP1) and the mast cell count (MCC) and to detect their clinicopathologic significance and relationship in pancreatic cancer tissues. Methods Immunohistochemical method of avidin-biotin complex was used for those 5 targets on the routinely paraffinembedded sections of surgical resected specimen of 51 cases with pancreatic carcinoma. Results The positive rates of EMMPRIN,MMP1,MMP9 and TIMP1 were 56.9%,54.9%,60.8% and 49.0% and its scoring were 2.5±1.5,2.3±1.9,2.4±1.6 and 1.9±1.6 respectively. The mean of MCC was (16.1±6.8)/HP in total cases. The positive rates or scorings of EMMPRIN,MMP1,MMP9 and MCC were significantly lower in high differentiated or without-metastatic cases than in low differentiated or with-metastatic ones(P<0.05 or P<0.01), and those targets (except MCC and scoring of MMP9) of middle differentiated ones were lower than those of low differentiated while that of TIMP1 was opposite(P<0.01). The MCC showed significantly higher in the positive cases of EMMPRIN, MMP1 and MMP9 or negative cases of TIMP1 than in the negative ones of EMMPRIN, MMP1 and MMP9 or positive ones of TIMP1. The closely positive correlations were found among the MCC and the scoring of EMMPRIN, MMP1 and MMP9. The closely negative correlations existed among the scoring of TIMP1 and the other four targets.Conclusion The MCC and the expressions of EMMPRIN, MMP1, MMP9 and TIMP1 might be important biological markers for reflecting the progression and the prognosis of pancreatic carcinoma. They might have co-regulated effects on the potentials of invasion and metastasis of pancreatic carcinoma or other malignant lesions.
Objective To review the current research status and clinical application progress of extracellular matrix (ECM) material in tissue engineering. Methods The literature about the latest progress in the preparation, biocompatibility, mechanical property, degradability, and clinical application of ECM material was extensively reviewed. Results The improvement of the ECM preparation method and thorough understanding of the immunological properties have laid the foundation for the repair and reconstruction of the tissue. Moreover, a series of animal studies also confirm that the feasibility and effectiveness of the ECM such as small intestinal submucosa, bladder ECM grift, and acellular dermis which have been applied to the repair and reconstruction of the urethra, bladder, arteries, and skin tissue. It shows a wide prospect of clinical application in the future. Conclusion ECM material is a good bio-derived scaffold, which is expected to become an important source of alternative materials for the repair and reconstruction of the tissue.