west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electrocardiogram" 16 results
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • Electrocardiogram data recognition algorithm based on variable scale fusion network model

    The judgment of the type of arrhythmia is the key to the prevention and diagnosis of early cardiovascular disease. Therefore, electrocardiogram (ECG) analysis has been widely used as an important basis for doctors to diagnose. However, due to the large differences in ECG signal morphology among different patients and the unbalanced distribution of categories, the existing automatic detection algorithms for arrhythmias have certain difficulties in the identification process. This paper designs a variable scale fusion network model for automatic recognition of heart rhythm types. In this study, a variable-scale fusion network model was proposed for automatic identification of heart rhythm types. The improved ECG generation network (EGAN) module was used to solve the imbalance of ECG data, and the ECG signal was reproduced in two dimensions in the form of gray recurrence plot (GRP) and spectrogram. Combined with the branching structure of the model, the automatic classification of variable-length heart beats was realized. The results of the study were verified by the Massachusetts institute of technology and Beth Israel hospital (MIT-BIH) arrhythmia database, which distinguished eight heart rhythm types. The average accuracy rate reached 99.36%, and the sensitivity and specificity were 96.11% and 99.84%, respectively. In conclusion, it is expected that this method can be used for clinical auxiliary diagnosis and smart wearable devices in the future.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
  • A research for reasonable configuration standard of electrocardiogram monitors in surgical nursing units of a large public hospital based on analytic hierarchy process

    ObjectiveTo find out the influencing factors of electrocardiogram (ECG) monitor configuration decision in surgical nursing units and form a scientific configuration standard, so as to provide a basis for the reasonable configuration of ECG monitors.MethodsFrom May to June 2018, the indexes and weights affecting the configuration of ECG monitors in surgical nursing units of a large public hospital were determined by interview survey method and analytic hierarchy process.ResultsThe influencing factors for configuration of ECG monitors in surgical nursing units were the number of operations, number of rescues, number of emergencies, number of deaths, and number of patients transferred to and out of intensive care unit, and the weights were 0.459 7, 0.224 9, 0.155 3, 0.111 2, and 0.049 0, respectively. The classification of nursing units was taken as plan, and the configuration standard of ECG monitors was established.ConclusionThe configuration model of ECG monitors in surgical nursing units based on analytic hierarchy process realizes the combination of qualitative and quantitative analysis, which provides scientific and reasonable reference for the configuration of ECG monitors.

    Release date:2019-06-25 09:50 Export PDF Favorites Scan
  • Artificial intelligence in wearable electrocardiogram monitoring

    Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Electrocardiogram signal classification based on fusion method of residual network and self-attention mechanism

    In the diagnosis of cardiovascular diseases, the analysis of electrocardiogram (ECG) signals has always played a crucial role. At present, how to effectively identify abnormal heart beats by algorithms is still a difficult task in the field of ECG signal analysis. Based on this, a classification model that automatically identifies abnormal heartbeats based on deep residual network (ResNet) and self-attention mechanism was proposed. Firstly, this paper designed an 18-layer convolutional neural network (CNN) based on the residual structure, which helped model fully extract the local features. Then, the bi-directional gated recurrent unit (BiGRU) was used to explore the temporal correlation for further obtaining the temporal features. Finally, the self-attention mechanism was built to weight important information and enhance model's ability to extract important features, which helped model achieve higher classification accuracy. In addition, in order to mitigate the interference on classification performance due to data imbalance, the study utilized multiple approaches for data augmentation. The experimental data in this study came from the arrhythmia database constructed by MIT and Beth Israel Hospital (MIT-BIH), and the final results showed that the proposed model achieved an overall accuracy of 98.33% on the original dataset and 99.12% on the optimized dataset, which demonstrated that the proposed model can achieve good performance in ECG signal classification, and possessed potential value for application to portable ECG detection devices.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates

    Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • Research and Practice of Graphic-sequenced Memory Method in Electrocardiogram Teaching

    ObjectiveTo explore the actual effect of “graphic-sequenced memory method” in teaching electrocardiogram (ECG). MethodsOne hundred students were randomly divided into a traditional teaching group (n=50) and an innovative teaching group (n=50) in May, 2014. Teachers in the traditional teaching group utilized the traditional teaching outline, and teachers in the innovative teaching group received training in the new teaching method and syllabus. All students took an examination in the final semester by analyzing 20 ECGs from real clinical cases and gave their ECG reports. ResultsThe average ECG reading time was (32.0±4.8) minutes for the traditional teaching group and (18.0±3.6) minutes for the innovative teaching group. The average ECG accuracy results were (43.0±5.2)% for the traditional teaching group and (77.0±9.6)% for the innovative teaching group. ConclusionsECG learning is an important branch of the cardiac discipline, but ECG’s mechanisms are intricate and the learning content scattered. Textbooks tend to make students feel confused due to the restrictions of the length and format of the syllabi, and there are many other limitations. Graphic-sequenced memory method is a useful method which can be fully used in ECG teaching.

    Release date: Export PDF Favorites Scan
  • Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network

    Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.

    Release date:2025-02-21 03:20 Export PDF Favorites Scan
  • The joint analysis of heart health and mental health based on continual learning

    Cardiovascular diseases and psychological disorders represent two major threats to human physical and mental health. Research on electrocardiogram (ECG) signals offers valuable opportunities to address these issues. However, existing methods are constrained by limitations in understanding ECG features and transferring knowledge across tasks. To address these challenges, this study developed a multi-resolution feature encoding network based on residual networks, which effectively extracted local morphological features and global rhythm features of ECG signals, thereby enhancing feature representation. Furthermore, a model compression-based continual learning method was proposed, enabling the structured transfer of knowledge from simpler tasks to more complex ones, resulting in improved performance in downstream tasks. The multi-resolution learning model demonstrated superior or comparable performance to state-of-the-art algorithms across five datasets, including tasks such as ECG QRS complex detection, arrhythmia classification, and emotion classification. The continual learning method achieved significant improvements over conventional training approaches in cross-domain, cross-task, and incremental data scenarios. These results highlight the potential of the proposed method for effective cross-task knowledge transfer in ECG analysis and offer a new perspective for multi-task learning using ECG signals.

    Release date: Export PDF Favorites Scan
  • A review on intelligent auxiliary diagnosis methods based on electrocardiograms for myocardial infarction

    Myocardial infarction (MI) has the characteristics of high mortality rate, strong suddenness and invisibility. There are problems such as the delayed diagnosis, misdiagnosis and missed diagnosis in clinical practice. Electrocardiogram (ECG) examination is the simplest and fastest way to diagnose MI. The research on MI intelligent auxiliary diagnosis based on ECG is of great significance. On the basis of the pathophysiological mechanism of MI and characteristic changes in ECG, feature point extraction and morphology recognition of ECG, along with intelligent auxiliary diagnosis method of MI based on machine learning and deep learning are all summarized. The models, datasets, the number of ECG, the number of leads, input modes, evaluation methods and effects of different methods are compared. Finally, future research directions and development trends are pointed out, including data enhancement of MI, feature points and dynamic features extraction of ECG, the generalization and clinical interpretability of models, which are expected to provide references for researchers in related fields of MI intelligent auxiliary diagnosis.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content