OBJECTIVE: To investigate apoptosis of chondrocytes cultured in vitro and related expression of caspase-3. METHODS: Apoptosis of chondrocytes were detected by flow cytometry analysis and TUNEL staining. The expression of caspase-3 was determined by RT-PCR and Western blot, and caspase-3 protein activity was determined by ELISA. RESULTS: Apoptosis was observed in chondrocytes cultured in vitro from passage 1 to passage 4 at various degrees. The percentage of apoptosis of chondrocytes on day 7 was much higher than that on day 3 (15.7% +/- 0.3% vs 8.9% +/- 0.6%, P lt; 0.01). caspase-3 mRNA and protein expressed in chondrocytes during whole culture process. Along with the culture time extension in vitro, caspase-3 expression and protein activity up-regulated, coincident with apoptosis of chondrocyte. caspase-3 was activated and a fragment of 20 kDa was detected after 7 days of culture. CONCLUSION: caspase-3 is involved in apoptosis of chondrocytes cultured in vitro.
Objective To observe the main biological characteristics and chondrogenesis potency of bone marrow -derived stromal cells(MSCs) after cytokinesinduction or gene modification in vitro. Methods MSCs from an adult New Zealand white rabbit were isolated and cultivated, and then MSCs were divided into the common medium group(Group A, 15%FBS in DMEM), the induced group by cytokines (Group B), the transfected group(Group C)with adenovirus-hepatocyte growth factor transgene (adHGF). The medium of group B consisted of transforming growth factor-β1(TGF-β1,10 ng/ml), basic fibroblast growth factor(bFGF,25 ng/ml) addexamethasone (DEX,10-7mol/L) with 15%FBS in DMEM. Cartilage slices wereobtained from femoral condyles and patellar grove in the same rabbit. The minced cartilage was digested in Ⅱ collagenase (3 mg/ml) to obtain chondrocytes(Group D). The change of cell appearance, proliferation capacity, glycosaminoglycans(GAG), immunohistochemical staining for type Ⅰ, Ⅱ collagen were observed during the 5th passage MSCs and MSCs after induction or gene modification. Expression of mRNA for type Ⅰ and Ⅱ collagen was detected by RT-PCR. Results Primary MSCs proliferated as shortspindle shape, while the 5th MSCs showed longspindle shape. Positive stain of type Ⅰ collagen could be found in groups A, B and C, while positivestain of type Ⅱ collagen was shown in groups B and D. The content of GAG in group B was higher than that in group A, but there was no significant difference between them(Pgt;0.05), and there was significant difference between groups A and D(Plt;0.05). No significant difference was noted in groups A,B and C on proliferation by MTT(Pgt;0.05),except that of at the fourth day after transfection between groups A and C(Plt;0.05). RT-PCR demonstrated that MSCs always had higher levelsof mRNA type Ⅰ collagen in groups A, B and C. The expression of mRNA type Ⅱ collagen was identified in groups B and D, and only low levels of mRNA type Ⅱ collagen in group C. Conclusion The above results indicate MSCs have a natural tendency of osteogenic differentiation in vitro culture, and also demonstrate the chondrogenic potency with the technique of cytokines induction or gene modification after passage. MSCs can be transfected efficiently being seed cells in tissue engineered bone or cartilage to accept target genes such as adHGF, and have a higher levels of expression in vitro, which lasted 4 weeks at least.
ObjectiveTo assess the role and effect of Wharton's jelly of human umbilical cord oriented scaffold on chondrocytes co-cultured in vitro. MethodsChondrocytes from shoulder cartilage of adult New Zealand rabbits were isolated,cultured,amplified,and labelled using fluorescent dye PKH26.Cells were extracted from human umbilical cord tissue using wet-grinding chemical technology to prepare the Wharton's jelly of human umbilical cord oriented scaffold by freeze-drying and cross-linking technology.Second generation of chondrocytes were cultured with Wharton's jelly of human umbilical cord oriented scaffold.Inverted microscope and scanning electron microscope (SEM) were used to observe the cell distribution and adhesion on the scaffold; extracellular matrix secretion of the chondrocytes were observed by toluidine blue and safranin O staining.Cells distribution and proliferation on the scaffold were assessed by fluorescein diacetate-propidium iodide (FDA-PI) and Hoechst33258 staining.The viability of the in vitro cultured and PKH26 fluorescence labelled chondrocytes on the scaffold were assessed via fluorescence microscope. ResultsInverted microscope showed that the cells cultured on the scaffold for 3 days were round or oval shaped and evenly distributed into space of the scaffold.SEM observation showed that large number of cultured cells adhered to the pores between the scaffolds and were round or oval shape,which aggregated,proliferated,and arranged vertically on longitudinally oriented scaffold at 7 days after culture.Histological observation showed that cells distributed and proliferated on the scaffold,and secreted large amount of extracellular matrix at 7 days.Scaffold could guide cell migration and proliferation,and could effectively preserve and promote the secretion of extracellular matrix.Cell viability assessments at 3 days after culture showed most of the adhered cells were living and the viability was more than 90%.PKH26 labelled chondrocytes were seen,which distributed uniformly along the pore of oriented scaffold,and exuberantly proliferated. ConclusionWharton's jelly of human umbilical cord oriented scaffold favors adhesion,proliferation,and survival of chondrocytes.It possesses a favorable affinity and cell compatibility.Thus,it is an ideal scaffold for cartilage tissue engineering.
Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.
Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.
Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
ObjectiveTo review the chondrocyte survival microenvironment and the research progress of the application of microfluidic chips in constructing the chondrocyte microenvironment. MethodsRecent literature about the role of microenvironment in the regulation of chondrocytes and the application of microfluidic chips in constructing the chondrocyte microenvironment was reviewed and analyzed. ResultsRegulating the microenvironment of chondrocyte mainly involves extracellular matrix microenvironment, mechanical microenvironment, electric microenvironment, and hypoxic microenvironment. Currently, the related research of chondrocyte microenvironment based on microfluidic system mainly involves biochemical stimuli, mechanical stimuli, production of biomimetic scaffold materials, and so on. ConclusionIt will be helpful for constructing cartilage tissue being closer to the physiological function in the future to deeply understand chondrocyte survival environment and to mimic the microenvironment in vivo required by chondrocyte development as possible by using microfluidic chips.
OBJECTIVE: To study the feasibility of the formation of allogeneic tissue-engineered cartilage of certain shape in immunocompetent animal using the injectable biomaterial. METHODS: Fresh newborn rabbits’ articular cartilages were obtained under sterile condition (lt; 6 hours after death) and incubated in the sterile 0.3% type II collagenase solution. After digestion of 8 to 12 hours, the solution was filtered through a 150 micron nylon mesh and centrifuged, then the chondrocytes were washed twice with phosphate buffered saline (PBS) and mixed with the biomaterial to create a final cell density of 5 x 107/ml. The cell-biomaterial admixture was injected into rabbits subcutaneously 0.3 ml each point while we drew the needle back in order to form the neocartilage in the shape of cudgel, and the control groups were injected with only the biomaterial or the suspension of chondrocytes with the density of 5 x 10(7)/ml. After 4, 6, 8 and 12 weeks, the neocartilages were harvested to analyze. RESULTS: The new nodes could be touched subcutaneously after 2 weeks. In the sections of the samples harvested after 4 weeks, it was found that the matrix secreted and the collagen formed. After 6 weeks and later than that, the neocartilages were mature and the biomaterial was almost completely degraded. The cudgel-shaped samples of neocartilage could be formed by injection. In the experiment group, there was no obvious immune rejection response. On the contrary, there were no neocartilage formed in the control group. CONCLUSION: The injectable biomaterial is a relatively ideal biomaterial for tissue engineering, and it is feasible to form allogeneic tissue engineered cartilage of certain shape by injection in an immunocompetent animal.
To construct the retroviral vector containing human interleukin 1 receptor antagonist (IL-1Ra)and to investigate the property of the transfected articular chondrocytes from osteoarthritic patients in vitro. Methods Retroviral vector PLXRN carrying IL-1Ra (PLXRN-IL-1Ra) gene was constructed by inserting IL-1Ra gene at the sites of Sal I and BamH I. The recombinant retroviral plasmid was homologously recombinated in bacterial cells. After screening and ampl ification, the recombinant retroviral plasmid was obtained and transfected into PT67 cells. The repl ication-defective retrovirus PLXRN-IL- 1Ra was packed and ampl ified in the PT67 cells. Viral titer was determined by infecting NIH/3T3 cells with serially diluted viral supernatants produced with a control vector. Experiments were divided into 3 groups: non-transducted group (group A), PLXRN transduction group (group B), PLXRN-IL-1Ra transduction group (group C). Primary articular chondrocytes from osteoarthritic patients were transduced with PLXRN and PLXRN-IL-1Ra.The positive chondrocytes clones, which were G418- resistant, were cultured for 3-4 weeks after being selected by G418. The expression of IL-1Ra mRNA in the chondrocytes was determined by RT-PCR. Levels of IL-1Ra protein synthesis in the supernatants were measured by ELISA. Results Restric tive endonuclease identification and gene sequencing confirmed that the recombinant contained IL-1Ra cDNA.Virus titer could reach 3 × 104 CFU/mL. Primary chondrocytes cultured in vitro were polygonal or spindle and were stained with purple particles by toluidine blue staining. After stable transduction into the chondrocytes the 311 bp fragment of IL-1Ra was detected in group C by semi-quantitative RT-PCR. ELISA showed that IL-1Ra in supernatants of the group A and group B were below the level of detection. The concentrations were(60.47 ± 15.13)ng/L in group C .There were significant differences between gene transduction group and control groups (P lt; 0.05). Conclusion The construction of recombinant retrovirus vector by homologous recombination in bacterial cells can be quickly and easily performed. Stable and effective expression of IL-1Ra can be achieved by transduction with retroviral vectors in osteoarthritic articular chondrocytes, indicating potential util ity in gene therapy for osteoarthritis.
Objective To study the variation of CD105+/CD166+ cells and its multilineage potential in early osteoarthritis (OA) cartilage so as to lay a foundation for cartilage repair and pathologic cartilage remodeling in arthritis. Methods The knee OA model was established in the right knee of 30 adult New Zealand rabbits (8-12 months old). The chondrocytes were harvested from normal cartilage of the left knee (group A), OA cartilage of the right knee at 2 weeks (group B), at 4 weeks (group C), and at 8 weeks (group D) after modeling, and BMSCs were used in group E for the expression of CD105 and CD166. The percentage of CD105+/CD166+ cells in each group was counted by flow cytometry, and CD105+/CD166+ cells were isolated and purified by magnetic-activated cell sorting. The expressions of CD105 and CD166 were observed in 5 groups by laser scanning confocal microscope. Chondrogenesis, osteogenesis, and adipogenesis were evaluated with Alcian blue cytochemistry and collagen type II immunohistochemistry, by detecting the deposition of calcium, and with oil red O staining, respectively. Results The percentage of CD105+/CD166+ cells in group A, B, C, and D was significantly lower than that in group E (P lt; 0.05); it was significantly higher in groups B, C, and D than in group A (P lt; 0.05), and in group D than in groups B and C (P lt; 0.05), but no significant difference was found between groups B and C (P gt; 0.05). Laser scanning confocal microscope results confirmed the expressions of CD105+ and CD166+ cells in groups A, B, C, D, and E, no obvious difference in expression was shown among 5 groups. At 1 week after chondrogenic induction, positive expressions of proteoglycan and collagen type II were observed in 5 groups, no obvious difference was noticed among 5 groups. At 2 weeks after osteogenic induction, calcium level in group E was significantly higher than that in groups A, B, C, and D (P lt; 0.05), but no significant different was found among groups A, B, C, and D (P gt; 0.05). At 4 weeks after adipogenic induction, there were more red lipid droplets in group E than in groups A, B, C, and D. Conclusion CD105+/CD166+ cells in early OA cartilage increase, which show chondrogenic differentiation potential.