west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Chondrocyte" 47 results
  • APOPTOSIS OF FETUS CHONDROCYTES CULTURED IN VITRO AND EXPRESSION OF CASPASE-3

    OBJECTIVE: To investigate apoptosis of chondrocytes cultured in vitro and related expression of caspase-3. METHODS: Apoptosis of chondrocytes were detected by flow cytometry analysis and TUNEL staining. The expression of caspase-3 was determined by RT-PCR and Western blot, and caspase-3 protein activity was determined by ELISA. RESULTS: Apoptosis was observed in chondrocytes cultured in vitro from passage 1 to passage 4 at various degrees. The percentage of apoptosis of chondrocytes on day 7 was much higher than that on day 3 (15.7% +/- 0.3% vs 8.9% +/- 0.6%, P lt; 0.01). caspase-3 mRNA and protein expressed in chondrocytes during whole culture process. Along with the culture time extension in vitro, caspase-3 expression and protein activity up-regulated, coincident with apoptosis of chondrocyte. caspase-3 was activated and a fragment of 20 kDa was detected after 7 days of culture. CONCLUSION: caspase-3 is involved in apoptosis of chondrocytes cultured in vitro.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON THE MAIN BIOLOGICAL CHARACTERISTICS OF MARROW-DERIVED STROMAL CELLS AND CHONDROCYTES IN VITRO CULTURE IN RABBITS

    Objective To observe the main biological characteristics and chondrogenesis potency of bone marrow -derived stromal cells(MSCs) after cytokinesinduction or gene modification in vitro. Methods MSCs from an adult New Zealand white rabbit were isolated and cultivated, and then MSCs were divided into the common medium group(Group A, 15%FBS in DMEM), the induced group by cytokines (Group B), the transfected group(Group C)with adenovirus-hepatocyte growth factor transgene (adHGF). The medium of group B consisted of transforming growth factor-β1(TGF-β1,10 ng/ml), basic fibroblast growth factor(bFGF,25 ng/ml) addexamethasone (DEX,10-7mol/L) with 15%FBS in DMEM. Cartilage slices wereobtained from femoral condyles and patellar grove in the same rabbit. The minced cartilage was digested in Ⅱ collagenase (3 mg/ml) to obtain chondrocytes(Group D). The change of cell appearance, proliferation capacity, glycosaminoglycans(GAG), immunohistochemical staining for type Ⅰ, Ⅱ collagen were observed during the 5th passage MSCs and MSCs after induction or gene modification. Expression of mRNA for type Ⅰ and Ⅱ collagen was detected by RT-PCR. Results Primary MSCs proliferated as shortspindle shape, while the 5th MSCs showed longspindle shape. Positive stain of type Ⅰ collagen could be found in groups A, B and C, while positivestain of type Ⅱ collagen was shown in groups B and D. The content of GAG in group B was higher than that in group A, but there was no significant difference between them(Pgt;0.05), and there was significant difference between groups A and D(Plt;0.05). No significant difference was noted in groups A,B and C on proliferation by MTT(Pgt;0.05),except that of at the fourth day after transfection between groups A and C(Plt;0.05). RT-PCR demonstrated that MSCs always had higher levelsof mRNA type Ⅰ collagen in groups A, B and C. The expression of mRNA type Ⅱ collagen was identified in groups B and D, and only low levels of mRNA type Ⅱ collagen in group C. Conclusion The above results indicate MSCs have a natural tendency of osteogenic differentiation in vitro culture, and also demonstrate the chondrogenic potency with the technique of cytokines induction or gene modification after passage. MSCs can be transfected efficiently being seed cells in tissue engineered bone or cartilage to accept target genes such as adHGF, and have a higher levels of expression in vitro, which lasted 4 weeks at least.

    Release date: Export PDF Favorites Scan
  • POSSIBILITY OF USING CARTILAGE CULTURED IN CENTRIFUGE TUBE AS A SUBSTITUTE FOR MENISCUS

    Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIR OF ARTICULAR CARTILAGE DEFECT IN LARGE AREA WITH CHONDROCYTES CULTURED ON FASCIA

    Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.

    Release date: Export PDF Favorites Scan
  • A MORPHOLOGICAL STUDY OF CHONDROGENESIS BY ADIPOSE-DERIVED ADULT STEM CELLS INDUCED BY RECOMBINANT HUMAN BONE MORPHOGENETICPROTEIN 2

    Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • FORMATION OF THE ALLOGENEIC TISSUE ENGINEERED CARTILAGE USING INJECTABLE BIOMATERIAL

    OBJECTIVE: To study the feasibility of the formation of allogeneic tissue-engineered cartilage of certain shape in immunocompetent animal using the injectable biomaterial. METHODS: Fresh newborn rabbits’ articular cartilages were obtained under sterile condition (lt; 6 hours after death) and incubated in the sterile 0.3% type II collagenase solution. After digestion of 8 to 12 hours, the solution was filtered through a 150 micron nylon mesh and centrifuged, then the chondrocytes were washed twice with phosphate buffered saline (PBS) and mixed with the biomaterial to create a final cell density of 5 x 107/ml. The cell-biomaterial admixture was injected into rabbits subcutaneously 0.3 ml each point while we drew the needle back in order to form the neocartilage in the shape of cudgel, and the control groups were injected with only the biomaterial or the suspension of chondrocytes with the density of 5 x 10(7)/ml. After 4, 6, 8 and 12 weeks, the neocartilages were harvested to analyze. RESULTS: The new nodes could be touched subcutaneously after 2 weeks. In the sections of the samples harvested after 4 weeks, it was found that the matrix secreted and the collagen formed. After 6 weeks and later than that, the neocartilages were mature and the biomaterial was almost completely degraded. The cudgel-shaped samples of neocartilage could be formed by injection. In the experiment group, there was no obvious immune rejection response. On the contrary, there were no neocartilage formed in the control group. CONCLUSION: The injectable biomaterial is a relatively ideal biomaterial for tissue engineering, and it is feasible to form allogeneic tissue engineered cartilage of certain shape by injection in an immunocompetent animal.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • CONSTRUCTION AND IDENTIFICATION OF RECOMBINANT RETROVIRAL VECTOR CONTAINING HUMANINTERLEUKIN 1 RECEPTOR ANTAGONIST AND ITS EXPRESSION IN OSTEOARTHRITIC HUMAN ARTICULARCHONDROCYTES

    To construct the retroviral vector containing human interleukin 1 receptor antagonist (IL-1Ra)and to investigate the property of the transfected articular chondrocytes from osteoarthritic patients in vitro. Methods Retroviral vector PLXRN carrying IL-1Ra (PLXRN-IL-1Ra) gene was constructed by inserting IL-1Ra gene at the sites of Sal I and BamH I. The recombinant retroviral plasmid was homologously recombinated in bacterial cells. After screening and ampl ification, the recombinant retroviral plasmid was obtained and transfected into PT67 cells. The repl ication-defective retrovirus PLXRN-IL- 1Ra was packed and ampl ified in the PT67 cells. Viral titer was determined by infecting NIH/3T3 cells with serially diluted viral supernatants produced with a control vector. Experiments were divided into 3 groups: non-transducted group (group A), PLXRN transduction group (group B), PLXRN-IL-1Ra transduction group (group C). Primary articular chondrocytes from osteoarthritic patients were transduced with PLXRN and PLXRN-IL-1Ra.The positive chondrocytes clones, which were G418- resistant, were cultured for 3-4 weeks after being selected by G418. The expression of IL-1Ra mRNA in the chondrocytes was determined by RT-PCR. Levels of IL-1Ra protein synthesis in the supernatants were measured by ELISA. Results Restric tive endonuclease identification and gene sequencing confirmed that the recombinant contained IL-1Ra cDNA.Virus titer could reach 3 × 104 CFU/mL. Primary chondrocytes cultured in vitro were polygonal or spindle and were stained with purple particles by toluidine blue staining. After stable transduction into the chondrocytes the 311 bp fragment of IL-1Ra was detected in group C by semi-quantitative RT-PCR. ELISA showed that IL-1Ra in supernatants of the group A and group B were below the level of detection. The concentrations were(60.47 ± 15.13)ng/L in group C .There were significant differences between gene transduction group and control groups (P lt; 0.05). Conclusion The construction of recombinant retrovirus vector by homologous recombination in bacterial cells can be quickly and easily performed. Stable and effective expression of IL-1Ra can be achieved by transduction with retroviral vectors in osteoarthritic articular chondrocytes, indicating potential util ity in gene therapy for osteoarthritis.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CD105+/CD166+ CELLS AND ITS CHONDROGENIC POTENTIAL IN EARLY OSTEOARTHRITIS CARTILAGE

    Objective To study the variation of CD105+/CD166+ cells and its multilineage potential in early osteoarthritis (OA) cartilage so as to lay a foundation for cartilage repair and pathologic cartilage remodeling in arthritis. Methods The knee OA model was established in the right knee of 30 adult New Zealand rabbits (8-12 months old). The chondrocytes were harvested from normal cartilage of the left knee (group A), OA cartilage of the right knee at 2 weeks (group B), at 4 weeks (group C), and at 8 weeks (group D) after modeling, and BMSCs were used in group E for the expression of CD105 and CD166. The percentage of CD105+/CD166+ cells in each group was counted by flow cytometry, and CD105+/CD166+ cells were isolated and purified by magnetic-activated cell sorting. The expressions of CD105 and CD166 were observed in 5 groups by laser scanning confocal microscope. Chondrogenesis, osteogenesis, and adipogenesis were evaluated with Alcian blue cytochemistry and collagen type II immunohistochemistry, by detecting the deposition of calcium, and with oil red O staining, respectively. Results The percentage of CD105+/CD166+ cells in group A, B, C, and D was significantly lower than that in group E (P lt; 0.05); it was significantly higher in groups B, C, and D than in group A (P lt; 0.05), and in group D than in groups B and C (P lt; 0.05), but no significant difference was found between groups B and C (P gt; 0.05). Laser scanning confocal microscope results confirmed the expressions of CD105+ and CD166+ cells in groups A, B, C, D, and E, no obvious difference in expression was shown among 5 groups. At 1 week after chondrogenic induction, positive expressions of proteoglycan and collagen type II were observed in 5 groups, no obvious difference was noticed among 5 groups. At 2 weeks after osteogenic induction, calcium level in group E was significantly higher than that in groups A, B, C, and D (P lt; 0.05), but no significant different was found among groups A, B, C, and D (P gt; 0.05). At 4 weeks after adipogenic induction, there were more red lipid droplets in group E than in groups A, B, C, and D. Conclusion CD105+/CD166+ cells in early OA cartilage increase, which show chondrogenic differentiation potential.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON TISSUE ENGINEERED TESTICULAR PROSTHESIS WITH INTERNAL SUPPORT

    Objective To investigate the feasibility and characteristic of tissue engineered testicular prosthesis with highdensity polyethylene(HDPE,trade name: Medpor) and polyglycolic acid(PGA). Methods The chondrocytes were isolated from the swine articular.The PGA scaffold was incorporated with medpor which semidiameters were 6mmand 4mm respectively.Then, the chondrocytes (5×10 7/ml) were seeded onto Medpor-PGA scaffold and cultured for 2 weeks. The ten BALB/C mice were divided into two groups randomly(n=5). In the experimental group, the cell-scaffold construct was implanted into subcutaneous pockets on the back of nude mice. In the control group, the Medpor-PGA scaffold was implanted. The mice of two groups were sacrificed to harvest the newly formed cartilage prosthesis after 8 weeks. Macroscopy, histology and immunohistochemistry observations were made. Results The gross observation showed that on changes were in shape and at size, the color and elasticity were similar to that of normal cartilage and that the cartilage integrated with Medpor in the experimental group; no cartilage formed and fiberlike tissue was found in the control group. HE staining showed that many mature cartilage lacuna formed without blood vessel and some PGA did not degradated completely. Toluidine blue staining showed extracellular matrix had metachromia. Safranin O-fast green staining showed that many proteoglycan deposited and collagen type Ⅱ expression was bly positive. In the control group, Medpor was encapsulated by fiber tissue with rich blood vessel. Conclusion The newly formed complex of Medpor-PGA and cells was very similar to testicle in gross view and to normal cartilage in histology. This pilot technique of creating testicular prosthesis by incorporating tissue-engineered cartilage with Medpor demonstrated success.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • REGULATING EFFECTS OF TRANSFORMING GROWTH FACTOR β ON GENE EXPRESSION OF MATRIX METALLOPROTEINASE 13 mRNA IN HUMAN HYALINE CHONDROCYTES

    Objective To investigate the role of transforming growth factor β(TGF-β)in the regulation of the gene expression of matrix metalloproteinase 13(MMP-13)in the human hyaline chondrocytes. Methods The human hyaline chondrocytes harvested enzymatically and cultured in DMEM supplemented with 20% fetus calf serum were divided into 7 groups. Group 1 was used as a contol, and 1 ng/ml TGF-β(group 2), 10 ng/ml TGF-β(group 3), 100 ng/ml TGF-β(group 4), 1 ng/ml TGF-β+10 ng/ml IL-1β(group 5), 10 ng/ml TGF-β+10 ng/ml IL-1β(group 6),and 100 ng/ml TGF-β+10 ng/ml IL1β(group 7) were given for 12-hour coculture. The MMP-13 mRNA levels of passaged human hyaline chondrocytes were assessed by reverse transcriptionpolymerase chain reaction(RT-PCR) and real-time fluorescent quantitative PCR. Results TGF-β can increase the MMP-13 mRNA level respectively in the passagedhyaline chondrocytes. In the multifactor treated groups, TGF-β can decrease the MMP-13 mRNA level respectively and there was significant difference between groups (Plt;0.05).The level of MMP-13 mRNA expression had significant coherence withthe dosage of TGF-β. Conclusion The above results show that human chondrocytes express MMP-13 mRNA. TGF-β could cause a dosedependent stimulation on MMP-13 gene expression in human chondrocytes and have a potent effect of antagonizing IL-1β in osteoarthritis. TGF-β may play a crucial role in the occurrence anddevelopment of osteoarthritis through regulating MMP-13.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content