west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Chondrocyte" 47 results
  • STIMULATION OF INSULIN-LIKE GROWTH FACTOR-I TO CHONDROGENESIS OF ENGINEERING CARTILAGE TISSUE

    Objective To explore the ability of insulin-like growth factor-Ⅰ (IGF-Ⅰ) and hyaluracan acid in prompting chondrogenesis of engineering cartilage tissue.Methods Human articular chondrocytes were isolatedand cultured in DMEM plus 10% fetal bovine serum. They were divided into three groups:hyaluracan acid+chondrocytes + IGF-Ⅰ group(IGF-Ⅰ group), hyaluracan acid+chondrocytes group(cell group), hyaluracan acid group(control group). The ability of chondrogenesis was investigated by HE and toluidine blue staining, human collagen Ⅱ immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR).Results Both cell group and IGF-Ⅰ group could develop into cartilage tissue in the sixth week while control group could not. The number of cartilage lacuna in IGF-Ⅰ group were more than that in cell group. Human collagen Ⅱ immunohistochemistry showed that there were ber positive cell in IGF-Ⅰ group than in cell group, collagen Ⅱ mRNA expression was more higher and collagen Ⅰ mRNA expression was lower in IGF-Ⅰ group than in cell group. Conclusion Insulin growth factorⅠ can prompt chondrogenesis of engineering cartilage tissue and ameliorate the quality of engineering cartilage tissue in vitro.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF REPAIRING FULL-THICKNESS ARTICULAR CARTILAGE DEFECT WITH CHONDROCYTE-SODIUM ALGINATE HYDROGEL-SIS COMPLEX

    Objective To explore the effect of tissue engineered cartilage reconstructed by using sodium alginate hydrogel and SIS complex as scaffold material and chondrocyte as seed cell on the repair of full-thickness articular cartilage defects. Methods SIS was prepared by custom-made machine and detergent-enzyme treatment. Full-thickness articularcartilage of loading surface of the humeral head and the femoral condyle obtained from 8 New Zealand white rabbits (2-3weeks old) was used to culture chondrocytes in vitro. Rabbit chondrocytes at passage 4 cultured by conventional multipl ication method were diluted by sodium alginate to (5-7) × 107 cells/mL, and then were coated on SIS to prepare chondrocyte-sodium alginate hydrogel-SIS complex. Forty 6-month-old clean grade New Zealand white rabbits weighing 3.0-3.5 kg were randomized into two groups according to different operative methods (n=20 rabbits per group), and full-thickness cartilage defect model of the unilateral knee joint (right or left) was establ ished in every rabbit. In experimental group, the complex was implanted into the defect layer by layer to construct tissue engineered cartilage, and SIS membrane was coated on the surface to fill the defect completely. While in control group, the cartilage defect was filled by sodium alginate hydrogel and was sutured after being coated with SIS membrane without seeding of chondrocyte. General condition of the rabbits after operation was observed. The rabbits in two groups were killed 1, 3, 5, 7, and 9 months after operation, and underwent gross and histology observation. Results Eight rabbits were excluded due to anesthesia death, wound infection and diarrhea death. Sixteen rabbits per group were included in the experiment, and 3, 3, 3, 3, and 4 rabbits from each group were randomly selected and killed 1, 3, 5, 7, and 9 months after operation, respectively. Gross observation and histology Masson trichrome staining: in the experimental group, SIS on the surface of the implant was fused with the host tissue, and the inferface between them disappeared 1 month after operation; part of the implant was chondrified and the interface between the implant and the host tissue was fused 3 months after operation; the implant turned into fibrocartilage 5 months after operation; fiber arrangement of the cartilage in theimplant was close to that of the host tissue 7 months after operation; cartilage fiber in the implant arranged disorderly andactive cell metabol ism and prol iferation were evident 9 months after operation. While in the control group, no repair of thedefect was observed 9 months after operation. No obvious repair was evident in the defects of the control group within 9months after operation. Histomorphometric evaluation demonstrated that the staining intensity per unit area of the reparative tissue in the defect of the experimental group was significant higher than that of the control group at each time point (P lt; 0.05), the chondrification in the experimental group was increased gradually within 3, 5, and 7 months after operation (P lt; 0.05), and it was decreased 9 months after operation comparing with the value at 7 months after operation (P lt; 0.05). Conclusion Constructed by chondrocyte-sodium alginate hydrogel-SIS in complex with surficial suturing of SIS membrane, the tissue engineered cartilage can in-situ repair cartilage defect, promote the regeneration of cartilage tissue, and is in l ine with physiological repair process of articular cartilage.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • APPLICATION OF SILKS AS SCAFFOLDS FOR THREE-DEMENSIONAL CULTURE OF CHONDROCYTES

    OBJECTIVE: To observe the effects of silks on attachment, shape and function of chondrocytes cultured in vitro. METHODS: The silks from silk worm cocoons were digested by trypsin and coated with polylactic acid to from three dimensional scaffolds for rabbit rib chondrocyte culture. The growth and shape of chondrocytes were observed with phase contrast microscopy, scanning electron microscopy. RESULTS: The chondrocytes were adhered to silks slowly after chondrocytes were seeded into silk scaffolds and cells fixed on silks well 1 or 2 days later. Cells began to proliferate after 3 days and multiplicative growth was observed on the 6th day. Microholes of silk scaffolds were filled with chondrocytes 2 weeks later. Scanning electron microscopy showed that there was a lot of extracellular matrix surrounding cells. CONCLUSION: Silks are ideal for attachment, growth and function maintenance of chondrocytes, and silks can be used as scaffolds for chondrocytes in three dimensional culture.

    Release date:2016-09-01 10:27 Export PDF Favorites Scan
  • PRELIMINARY OBSERVATION OF BIOLOGICAL CHARACTERS OF CHONDROCYTES IN ARTICULAR LOOSE BODY

    Objective To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. Methods Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample’s cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes’ apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0.2% collagenase Ⅱ, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later.Comparison was made btween three cartilages. Results Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunars were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. Conclusion The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • POSSIBILITY OF USING CARTILAGE CULTURED IN CENTRIFUGE TUBE AS A SUBSTITUTE FOR MENISCUS

    Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF PATHOLOGY OF ENDOCHONDRAL OSSIFICATION IN OSTEOARTHRITIS

    ObjectiveTo summarize the research progress of pathological manifestations and mechanism of endochondral ossification in osteoarthritis (OA). MethodsThe literature about endochondral ossification, bone-cartilage remodeling in OA, and joints development was reviewed, analyzed, and summarized. ResultsChondrocyte hypertrophy and apoptosis, vascular invasion, replication of the tidemark, thickening calcified cartilage, and thinning superficial cartilage are the characteristics of cartilage degeneration in OA. Articular cartilage and growth plate are similar in structure, and cartilage degeneration in OA is similar to a process of endochondral ossification of the growth plate. ConclusionLoss of stability characterization from resting metabolic balance to a high conversion state of temporary cartilage in stimulation of abnormal mechanical stresses and cytokines would subsequently contributed to continual calcification and remodeling of articular cartilage, which may be the key link of the initiation and development of OA.

    Release date:2016-12-12 09:20 Export PDF Favorites Scan
  • OBSERVATION OF REPLICATIVE SENESCENCE OF RAT CHONDROCYTES IN VITRO

    Objective To observe the replicative senescence of rat articular chondrocyte cultured in vitro so as to provide reference for the succeeding experiment of using medicine interfere and reverse the cataplasia of tissue engineering cartilage or probing cataplasia mechanism.Methods Different generations(P1, P2, P3 and P4) of the chondrocytes were detected with the methods of histochemistry for β-galactosidase (β-gal), electronmicroscope for ultromicrostructure, immunocytochemistry for proliferating cell nuclear antigen (PCNA),alcian blue stain for content and structure of sulfatglycosaminoglycan (GAG) of extracellular matrix (ECM),reverse transcriptionpolymerase chain reaction (RTPCR) for content of collagen Ⅱ,flow cytometry for cell life cycle and proliferative index(PI) to observe senescence of chondrocytes.Results In the 4th passage,the chondrocytes emerging quantitively positive express of β-gal,cyto-architecture cataplasia such as caryoplasm ratio increasing and karyopycnosis emerging under electronmicroscope ,cell life cycle being detented on G1 phase(83.8%),while in P1, P2, P3 the content of G1 phase was 79.1%, 79.2%, 80.8% respectively. In the 4th passage, PI decreased(16.2%),while in P1, P2, P3, it was 20.9%, 20.8%, 19.2%. The positive percentage of PCNA,the content of GAG(long chain molecule) and the positive expression of collagen Ⅱ diminished,all detections above were significantly different (Plt;0.01) when compared the 4th passage with the preceding passages.Conclusion Chondrocytes show the onset of senescence in the 4th passage.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • REPAIR OF UPPER TIBIAL EPIPHYSEAL DEFECT WITH ENGINEERED EPIPHYSEAL CARTILAGE IN RABBITS

    OBJECTIVE: To observe the effect of engineered epiphyseal cartilage regenerated in vitro with 3-D scaffold by chondrocytes from epiphyseal plate in repairing the tibial epiphyseal defect, and to explore the methods to promote the confluence between engineered cartilage and epiphyseal plate. METHODS: Chondrocytes were isolated enzymatically from the epiphyseal plates of immature rabbits, and then planted into the tissue culture flasks and cultivated. The first passage chondrocytes were collected and mixed fully with the self-made liquid biological gel at approximately 2.5 x 10(7) cells/ml to form cell-gel fluid. The cell-gel fluid was dropped into the porous calcium polyphosphate fiber/poly-L-lactic acid(CPPf/PLLA)scaffold, and a cell-gel-scaffold complex formed after being solidified. The defect models of 40% upper tibial epiphyseal plate were made in 72 immature rabbits; they were divided into 4 groups: group A(the cell-gel-scaffold complex was transplanted into the defect and the gap filled with chondrocyte-gel fluid), group B (with noncell CPPf/PLLA scaffold), group C(with fat) and group D(with nothing). The changes of roentgenograph, gross and histology were investigated after 2, 4, 6, 8, 12 and 16 weeks of operation. RESULTS: In group A, the typical histological structure of epiphyseal plate derived from the engineered cartilage with a fine integration between host and donor tissues after 2 weeks. The repaired epiphyseal plate had normal histological structure without deformation of tibia after 4 weeks. The early histological change of epiphyseal closure appeared in the repaired area with varus and shortening deformation of the tibia after 8 weeks. The epiphyseal plate was closed in the repaired area with more evident deformation of tibia; the growth function of repaired epiphyseal plate was 43.6% of the normal one. In groups B, C and D, deformation of tibia occurred after 2 weeks; the defect area of epiphyseal plate was completely closed after 4 weeks. The deformation was very severe without growth of the injured epiphyseal plate after 16 weeks, and no significant difference was observed between the three groups. CONCLUSION: Engineered epiphyseal cartilage can repair the epiphyseal defect in the histological structure with partial recovery of the epiphyseal growth capability. Injecting the suspension of fluid chondrocyte-gel into the defects induces a fine integration of host and donor tissues.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • ROLE OF microRNAs ON REGULATION OF BONE AND CARTILAGE TISSUE

    Objective To review the regulation and mechanism of the microRNAs (miRNAs) in the bone and cartilage tissue. Methods Recent l iterature concerning the regulation and mechanism of the miRNAs in the bone and cartilage tissue was extensively reviewed, summarized, and analyzed. Results Recently miRNAs is a hot topic in the bone and cartilage tissue. More and more materials show its important regulatory role in osteogenesis and cartilage growth andregeneration, but the definite mechanisms have not been clear yet. Conclusion The study on miRNAs of bone and cartilage tissue can provide a new access to understanding the degenerative osteoarthritic diseases.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON ADIPOSE-DERIVED STEM CELLS TRANSFECTED BY BONE MORPHOGENETIC PROTEIN 14 CO-CULTURE WITH CHONDROCYTES

    Objective To evaluate the synergistic effect of bone morphogenetic protein 14 (BMP-14) and chondrocytes co-culture on chondrogenesis of adipose-derived stem cells (ADSCs) so as to optimize the source of seed cells for cartilage tissue engineering. Methods ADSCs and chondrocytes were isolated and cultured respectively from articular cartilage and subcutaneous fat of 2 male New Zealand white rabbits (weighing, 1.5 kg and 2.0 kg). The cells at passage 3 were harvested for experiment. ADSCs were identified by osteogenic induction (alizarin red staining), chondrogenic induction (alcian blue staining), and adipogenic induction (oil red O staining). The optimum multiplicity of infection (MOI) of transfection of adenovirus-cytomegalovirus (CMV)-BMP-14-internal ribosome entry site (IRES)-human renilla reniformis green fluorescent protein 1 (hrGFP-1) was determined and then ADSCs were transfected by the optimum MOI. The experiment was divided into 5 groups: group A, co-culture of ADSCs transfected by BMP-14 and chondrocytes (1 ∶ 1 in Transwell chambers); group B, co-culture of ADSCs and chondrocytes (1 ∶ 1 in Transwell chambers); group C, culture of ADSCs transfected by BMP-14; group D, simple chondrocytes culture; and group E, simple ADSCs culture. After 3 weeks, the glycosaminoglycan (GAG) content was detected by alcian blue staining; the expressions of collagen type II and BMP-14 protein were detected by Western blot; expression of Sox-9 gene was detected by RT-PCR. Results The cultured cells were proved to be ADSCs by identification. Inverted fluorescence microscope showed optimum transfection effect when MOI was 150. GAG content, expressions of collagen type II and BMP-14 protein, expression of Sox-9 gene were significantly higher in groups A and C than in the other 3 groups, in group A than in group C (P lt; 0.05), and groups B and D were significantly higher than group E (P lt; 0.05), but no significant difference was found between groups B and D (P gt; 0.05). Conclusion It can promote differentiation of ADSCs into chondrocytes by BMP-14 co-culture with chondrocytes, and they have a synergistic effect.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content