Objective To investigate the effects of histone modification on the expression of chemokines in alveolar epithelial typeⅡ cells ( AECⅡ) in a rat model of chronic obstructive pulmonary disease ( COPD) . Methods 20 SD rats were randomly assigned to a normal control group and a COPD group. The rat model of COPD was established by cigarette smoking. Lung histological changes were observed by HE staining. AECⅡ cells were isolated and identified by alkaline phosphatase staining and electron microscopic. The mRNA expressions of monocyte chemoattractant protein ( MCP) -1, IL-8, and macrophage inflammatory protein ( MIP) -2αwere detected by real-time quantitative PCR. The expression of histone deacetylase ( HDAC) 2 was measured by western blot. Chromatin immunoprecipitation ( ChIP) was used todetect H3 and H4 acetylation, and H4K9 methylation in the promoter region of chemokine gene. Results Compared with the control group, the mRNA expressions of MCP-1, IL-8, and MIP-2αin the COPD group increased 4. 48,3. 14, and 2. 83 times, respectively. The expression of HDAC2 protein in the COPD group wassignificantly lower than in the control group ( 0. 25 ±0. 15 vs. 0. 66 ±0. 15, P lt; 0. 05) . The expression of HDAC2 had a negative correlation with the gene expressions of IL-8, MCP-1, and MIP-2α( r = - 0. 960,- 0. 914, - 0. 928, respectively, all P lt;0. 05) . The levels of H3 and H4 acetylation were higher, and H4K9 methylation level was lower in the promoter region of chemokine gene in the COPD group compared with the control group ( all P lt; 0. 05) . Conclusions MCP-1, IL-8, and MIP-2α participate and promote the lung inflammatory response in COPD. HDAC2-mediated histone modification may play an important role in COPD inflammation.
Objective To summarize the relationships between chemokines or chemokine receptors, especially CCL19/CCL21-CCR7 and CXCL12-CXCR4 axis and occurrence and development of gastric cancer. Methods Domestic and international publications online involving the relationships between chemokines, chemokine recepotors and gastric cancer in recent years were collected and reviewed. Results By regulating the microenvironment of the growth of gastric cancer, CCL19/CCL21-CCR7 played an important role in lymph node metastasis and CXCL12-CXCR4 axis played a key role in the development of peritoneal carcinomatosis. CCR7 might function as a specific prognostic marker for lymph node metastasis of gastric cancer. Blocking the CXCL12-CXCR4 axis might be useful for the future development of a more effective therapeutic strategy for gastric cancer involved in peritoneal dissemination. Conclusions Chemokines and chemokine receptors promote the evolution of gastric cancer in variable ways, so the mechanisms of which should be comprehended to provide a theoretical basis for the future treatment. As new therapeutic targets, chemokines and chemokine receptors have a prosperity for the clinic evaluation and treatment of gastric cancer.
Objective To explore the expression of chemokine receptor CCR7 in thyroid papillary microcarcinoma tissues and the relationship with clinicopathological features. Methods The CCR7 expressions in 31 cases of thyroid papillary microcarcinoma, 34 cases of thyroid papillary carcinoma which diameter>1cm, 34 cases of nodular goiter, and 12 cases of thyroid papillary microcarcinoma contralateral normal thyroid tissues were detected by using immunohistochemistry S-P method. Results The expression positive rates of CCR7 in thyroid papillary microcarcinoma and papillary thyroid carcinoma which diameter> 1cm were both 100%, the difference had not statistically significant (P>0.05). In nodular goiter and normal thyroid tissues, the expression positive rate of CCR7 was 64.7% and 33.3%, respectively, and compared with thyroid papillary microcarcinoma, the difference had statistically significant (P<0.05). There were not relations between the expression of CCR7 and patient’s gender, age, capsule invasion, and lymph node metastasis (P>0.05). Conclusions The CCR7 in thyroid papillary microcarcinoma and thyroid papillary carcinoma which diameter> 1cm are both high expressions, and have the same bionomics, both prone to cervical lymph node meta-stasis, and the radical neck dissection (central area) are both need to take.
ObjectiveTo investigate the relationship between the pathological and functional changes of the retina and the expression of monocyte chemoattractant protein (MCP)-1 after retinal laser injury in mice. MethodsA total of 116 C57BL/6 mice were randomly divided into the normal group (58 mice) and the injured group (58 mice). Retinal laser injuries were induced by Argon ion laser. At 1, 3, 7 days after laser injury, electroretinogram (ERG) responses were recorded to detect the function of the retina. Hematoxylin and eosin (HE) staining was performed to observe pathological changes. Quantitative real-time polymerase chain reaction (PCR) was performed to detect gene expression of MCP-1. Western blot was used to measure the protein expression of MCP-1. ResultsHE staining showed a progressive damage of the retinal structure. The results of ERG showed that the differences of dark-adaptive a wave (t=6.998, 9.594, 13.778) and b wave (t=12.089, 13.310, 21.989) amplitudes of 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (P=0.000). At 1 day post-injury, the differences of light adaptive b wave amplitudes between the two groups were statistically significant (t=8.844, P=0.000). While the differences of light-adaptive a wave amplitudes were not (t=2.659,P=0.200). At 3, 7 days post-injury, the differences of a (t=3.076, 7.544) and b wave amplitudes (t=10.418, 8.485) between the two groups were statistically significant (P=0.000). In dark-adaptive ERG, the differences of a wave amplitudes between 1 day and 3 days (t=3.773), 1 day and 7 days (t=5.070) and b wave amplitudes between 1 day and 7 days (t=4.762) were statistically significant (P<0.01), while the differences of a wave amplitudes between the 3 days and 7 days (t=1.297) and b wave amplitudes between 1 day and 3 days (t=2.236), 3 day and 7 days (t=2.526) were not significant (P=0.660, 0.120, 0.060). In light-adaptive ERG, the differences of a wave amplitudes between 1 day and 7 days (t=2.992) and b wave amplitudes between 1 day and 3 days (t=3.570), 1day and 7 days (t=4.989) were statistically significant (P<0.05), while the differences of a wave amplitudes between 1 day and 3 days (t=0.516), the 3 days and 7 days (t=2.475) and b wave amplitudes between 3 days and 7 days (t=1.419) were not significant (P=1.000, 0.710, 0.070). Quantitative real-time PCR showed that the differences of MCP-1 gene expression at 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (t=14.329, 16.861, 5.743; P<0.05). Western blot showed that the differences of MCP-1 protein expression at 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (t=75.068, 54.145, 14.653; P<0.05). ConclusionIn the first 7 days after mice retinal laser injury, there are progressive pathological and functional damage of the retina, which might be correlated with MCP-1 expression.
ObjectiveTo investigate the effects of naringenin on the production of chemokines and its mechanism in human bronchial epithelial (HBE) cells. MethodsHBE cells were divided into a control group, a TNF-αgroup, a low-dose naringenin group, a moderate-dose naringenin group and a high-dose naringenin group. The Naringenin groups were incubated with different doses of naringenin (10, 5 and 2.5μmol/L, respectively) for 2 h. Then the naringenin groups and the TNF-αgroup were incubated with TNF-α. After 24 h of incubation, the levels of eotaxin and RANTES were determined by ELISA method, and IκBαdegradtion was detected by Western blot method. After incubated with TNF-αfor 30 min, NF-κB DNA-binding activity was detected by EMSA method. ResultsCompared with the control group, the levels of eotaxin and RANTES were significantly increased in the HBE cells stimulated with TNF-α. Naringenin had inhibitory effects on the expression of these chemokines. Naringenin abolished IκBαdegradation and reduced the DNA-binding activity of NF-κB. ConclusionNaringenin may inhibit the production of chemokines through inhibiting NF-κB pathway.
Objective To observe the influence of triamcinolone acetonide (TA) on the expression of pigment epitheliumderived factor (PEDF) of human retinal pigment epithelial (RPE) cells. Methods Cultured humanRPE cells (4th-6th generations) were treated with four different concentrations of TA (40, 400, 4times;103 and 4times;104 mu;g/L) for three different periods (12 or 24 or 48 hours), the levels of PEDF protein in the cell culture supernatant and cell lysates were determined by Western blot. After the initial experiment, RPE cells were treated with or without tumor necrosis factor-alpha; (TNF-alpha;, 20 ng/ml) for 24 hours, followed by TA (400 mu;g/L) treatment. The levels of PEDF and phospho-p38 mitogen activated protein kinase(p-p38MAPK) protein expression in cell culture supernatant and cell lysates were measured by Western blot. Results TAtreated RPE cells had higher PEDF expression, and 400 mu;g/L TA group had the highest effect (F=16.98,P<0.05). 400 mu;g/L TA treatment for one, six or 24 hours, with or without TNF-alpha; pretreatment, could all promote the PEDF expression and inhibit the p-p38MAPK protein expression (F=16.87, 10.28; P<0.01). TNF-alpha; pretreatment alone could inhibit PEDF protein expression and promote p-p38MAPK protein expression (F=16.87, 10.28; P<0.01). Conclusions TA can up-regulate the expression of PEDF, and downregulate the expression of p-p38MAPK in the cultured human RPE cells.
Objective To investigate the influence on matrix metalloproteinases (MMP) 3, 9, and 13 levels of human articular cartilage cells after blocking stromal cell derived factor 1 (SDF-1)/ chemokine receptor 4 (CXCR4) signaling pathway withAMD3100 and to define the function mechanism of AMD3100. Methods A total of 144 cartilage blocks from 12 osteoarthritis (OA) patients undergoing total knee arthroplasty (OA cartilage group) and 144 normal cartilage blocks (Mankin score of 0 or 1) from 12 patients undergoing traumatic amputation (normal cartilage group). OA cartilage group was further divided into subgroups A1, B1, and C1, and normal cartilage group into subgroups A2, B2, and C2. The cartilage tissues were cultured in DMEM solution containing 100 ng/mL SDF-1 and 1 000 nmol/L AMD3100 in subgroup A, 100 ng/mL SDF-1 and 1 000 nmol/L MAB310 in subgroup B, and 100 ng/mL SDF-1 in subgroup C, respectively. The levels of MMP-3, 9, and 13 were measured by ELISA; the expressions of MMP-3, 9, and 13mRNA were tested by RT-PCR. Results ELISA and RT-PCR results showed that the levels of MMP-3, 9, and 13 and the expressions of MMP-3, 9, and 13 mRNA were significantly lower in subgroup A than in subgroups B and C at the same time points (P lt; 0.05); the levels of MMP-3, 9, and 13 and the expressions of MMP-3, 9, and 13 mRNA were significantly higher in OA cartilage group than in normal cartilage group at the same time points (P lt; 0.05). Conclusion SDF-1 could induce overexpression and release of MMP-3, 9, and 13 in the articular cartilage through the SDF-1/CXCR4 signaling pathway; AMD3100 could reduce the mRNA expressions and secretion of MMP-3, 9, and 13 in OA cartilage by blocking the SDF-1/CXCR4 signaling pathway; but AMD3100 could not make the secretion of MMP-3, 9, and 13 return to normal levels in OA cartilage.
Objective To investigate the expression of eotaxin-1, eotaxin-2 and eotaxin-3 in ARPE-19 human RPE cells after exposure to light. Methods Cultured human RPE cells (5th~10th generations) were divided into lightinduced group and control group. Cells light-induced group were exposed to the blue light at the intensity of (600plusmn;100) Lux for 12 h to establish the light damaged model. Eotaxin-1, eotaxin-2 and eotaxin-3 mRNA and protein were determined by real time polymerase chain reaction and Western blot at 0, 3, 6, 12, 24 hours after light-induced. Results In light-induced groups, mRNA levels of eotaxin-1 and eotaxin-2 were increased at 0 h (t1=6.05.t2=12.561) and 3 h (t1=2.95.t2=3.67) significantly(P<0.05), but the mRNA level of eotaxin-3 had not changed (t3=1.57 and 1.00 respectively,P>0.05) at that time. At 6 h (t1=4.73,t2=18.64,t3=28.48), 12 h (t1=3.11,t2=20.62,t3=18.50), 24 h (t1=8.25,t2=38.27,t3=18.60), mRNA levels of eotaxin-1, 2, 3 were increased significantly (P<0.05). Except for the eotaxin-3 protein had not changed at 3 h (t3=1.28,P>0.05), protein expression of eotaxin-1, 2, 3 were increased significantly (P<0.05) at 0 h (t1=4.85,t2=5.45,t3=6..21), 3 h (t1=5.64,t2=4.55), 6 h (t1=31.60,t2=6.63,t3=7.15), 12 h (t1=14.09,t2=18.22,t3=15.76), 24 h (t1=6.96,t2=10.47,t3=12.85). Conclusion Eotaxin-1, eotaxin-2 and eotaxin-3 expression were increased after Light-damage, corresponding to the time after light exposure. Eotaxin-3 was the most prominent isoform.
Objective The observe the effects of interferon-inducible protein-10 (IP-10) on proliferation, migration and capillary tube formation of human retinal vascular endothelial cells (HREC) and human umbilical vein endothelial cells (HUVEC). Methods The chemokine receptor (CXCR3) mRNA of HREC and HUVEC were quantified by reverse transcriptase polymerase chain reaction (RT-PCR). In the presence of the different concentrations of IP-10, the difference in proliferation capacity of HREC and HUVEC were analyzed by cell counting kit-8 (CCK-8) methods. Wound scratch assay and threedimensional in vitro matrigel assay were used for measuring migration and capillary tube formation of HREC and HUVEC, respectively. Results RT-PCR revealed both HREC and HUVEC expressed CXCR3. The proliferation of HREC in the presence of IP-10 was inhibited in a dosagedependent manner (F=6.202,P<0.05), while IP-10 showed no effect on the inhibitory rate of proliferation of HUVEC (F=1.183,P>0.05). Wound scratch assay showed a significant reduction in the migrated distance of HREC and HUVEC under 10 ng/ml or 100 ng/ml IP-10 stimulation (F=25.373, 23.858; P<0.05). There was no effect on the number of intact tubules formed by HREC in the presence of 10 ng/ml or 100 ng/ml IP-10. The number of intact tubules formed by HREC in the presence of 1000 ng/ml IP-10 was remarkably smaller. The difference of number of intact tubules formed by HREC among 10, 100, 1000 ng/ml IP-10 and nonintervention group was statistically significant (F=5.359,P<0.05). Conclusion IP-10 can inhibit the proliferation, migration and capillary tube formation ability of HREC and the migration of HUVEC.
Mesenchymal stem cells (MSC) are considered to have important value in the treatment of various diseases because of their low immunogenicity, transferability, and strong tissue repair capacity. Stromal cell derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) pathway plays an important role in migration of MSC. The induction of homing of MSC to retina by regulating SDF-1/CXCR4 may exert the curative effect on diabetic retinopathy to greatest exent.