Previous studies have shown that growth arrest, dedifferentiation, and loss of original function occur in cells after multiple generations of culture, which are attributed to the lack of stress stimulation. To investigate the effects of multi-modal biomimetic stress (MMBS) on the biological function of human bladder smooth muscle cells (HBSMCs), a MMBS culture system was established to simulate the stress environment suffered by the bladder, and HBSMCs were loaded with different biomimetic stress for 24 h. Then, cell growth, proliferation and functional differentiation were detected. The results showed that MMBS promoted the growth and proliferation of HBSMCs, and 80 cm H2O pressure with 4% stretch stress were the most effective in promoting the growth and proliferation of HBSMCs and the expression level of α-smooth muscle actin and smooth muscle protein 22-α. These results suggest that the MMBS culture system will be beneficial in regulating the growth and functional differentiation of HBSMCs in the construction of tissue engineered bladder.
Objective To probe the relationship of differentiation degree with spread or survival prognosis in retinoblastoma (RB). Methods Clinical data, follow up status and eyeball specimens in 156 RB cases were investigated retrospectively. The tumors were divided into differentiated and undifferentiated groups. Conditions of the tumor invasion of ocular or surrounding tissues were reviewed. The fatality rate was obtained from the follow-up materials of 82 cases of RB. The fatality rate and the invasion rate between the two types were compared statistically by Chi-square test. In addition, the relation between the tumor invasion and death ,and the average survival time for dead people after surgery were explored. Results Local invasion of tumor cell was found in 8 eyes among 17 eyes with differentiated RB (47.06%),and in 66 eyes among 139 eyes with undifferentiated RB (47.48%).There was no significant difference with regards to the local invasion between the two types ( The fatality rate of cases of differentiated RB was 27.27%,and 22.54% in undifferent iated RB, and there was no statistical difference between the two types .The fat ality rate for patients with orbital and scleral extension was 100%, optic nerve invasion (grade Ⅳ) was 62.50%,and uveal invasion was 22.22%.The survival time for the dead victims were from 5 months to 41 months and averaged to 21.92 months. Conclusion There was no significant differ ence both in survival prognosis and local invasion between the two types. The survival prognosis of metastatic RB was dependent on the degree of spread and the efforts of treatment and regardless of the types of differentiation of RB cells. (Chin J Ocul Fundus Dis, 2001,17:18-20)
Objective To investigate the effect of blood microenvironment of rats with hepatic fibrosis on differentiation of human umbilical cord mesenchymal stem cells (HUCMSCs) into hepatocytes and its mechanisms. Methods Eighteen male adult Sprague Dawley rats [weighing, (200±20) g] were used, liver fibrosis was induced in 12 rats by repeated intraperitoneal injections of thioacetamide. The serum was separated after successful model preparation, and the serum of 6 normal rats was collected. ELISA assay was used to detect the concentrations of epidermal growth factor (EGF), hepatocyte growth factor (HGF), oncostatin M (OSM), and basic fibroblastic growth factor (bFGF). Passage 3 HUCMSCs were divided into 3 groups: cells were cultured for 7 days in DMEM/F12 containing 10% fetal bovine serum and 5 mL/ L serum from rats with hepatic fibrosis (group A), in DMEM/F12 containing 10% fetal bovine serum and 5 mL/ L serum from normal rats (group B), and in DMEM/F12 containing 10% fetal bovine serum (group C). The morphological changes of the cells were observed. The expressions of α-fetoprotein (AFP) and cytokeratin 18 (CK18) were detected by immunofluorescence. The protein levels of albumin (ALB), tryptophan 2, 3-dioxygenase (TPH2), and CYP3A4 and MAPK/ERK signal pathway protein (P-ERK) were detected using Western blot. The content of blood urea nitrogen (BUN) was measured by diacetyl m onoxime method. Results HE staining showed that the liver tissue of rats was in accordance with the change of fibrosis, indicating successful model preparation. In serum of normal rats and rats with hepatic fibrosis, the concentrations of EGF were (21.42±0.32) pg/mL and (17.57±0.31) pg/mL respectively, showing significant difference (t=14.989, P=0.000); the concentrations of OSM were (129.96±0.65) pg/mL and (98.44±1.32) pg/mL respectively, showing significant difference (t=37.172, P=0.000); the concentrations of HGF were below the detection limit and (1.03±0.12) ng/ mL respectively; and the concentrations of bFGF were lower than the detection limit in both groups. No morphological changes of cells were observed in both groups at 7 days, and there was no significant difference between groups. At 7 days after culture, the cells in group A could express human hepatocyte biomarkers of AFP, CK18 and hepatocyte-specific-function proteins of ALB, TPH2, and CYP3 A4 while cells in groups B and C did not. Western blot showed that cells in each group could express P-ERK protein. The relative level of P-ERK protein in group A was significantly higher than that in groups B and C (P < 0.05), but no significant difference was found between groups B and C (P > 0.05). The BUN concentration of group A [(0.74±0.07) mmol/ L] was significantly higher than that of groups B [(0.40±0.04) mmol/ L] and C [(0.38±0.04) mmol/L] (P < 0.05), but no significant difference was shown between groups B and C (P > 0.05). Conclusion Under the condition of hepatic fibrosis, the level of HGF will increase while EGF and OSM will decrease. The formed blood microenvironment will activate MAPK/ERK signal pathway in HUCMSCs, induce them differentiate into hepatocytes.
Objective To investigate the possibility of commitment differentiation of embryonic stem cells induced by the medium of cultured retinal neurons of SD rats. Methods The medium from cultured retinal neurons of SD rats were collected, sterilized and mixed with DMEM medium according to 2∶3 proportion, ES cells were cultured with these mixed medium and were observed under the phase contrast microscope daily, the induced cells were identified by NF immunohistochemistry methods. Results The ES cells cultured with these mixed medium can differentiate into neuron-like structure, and the induced cells were positive in NF immunofluorescence staining. Conclusion The medium from cultured retinal neurons of SD rats can induce ES cells commitment differentiation into neuron-like structure. (Chin J Ocul Fundus Dis, 2002, 18: 134-136)
Objective To analyze MC3T3E1 cell morphology, prol iferation, and osteogenic differentiation in fibrin gel (FG) so as to lay a fundament for use of FG in tissue engneering. Methods MC3T3E1 cells were incubated in three concentrations (20, 10 and 5 mg/mL)of FG as the experimental groups (groups A, B and C) and in the common medium culture as the control group (group D). The cell morphology and distribution in FG were observed by inverted phase contrast microscope and confocal laser scanning microscope at different time. The cell prol iferation was assessed by fluorospectrophotometer. The alkal ine phosphatase (ALP) activity was detected by automatic biochemistry analyses and von Kossa staining was used to analyze calcium salts mineralization. RT-PCR was used to analyze the ALP and bone sialoprotein (BSP)mRNA expression at 14 and 21 days. Results In groups A, B and C, the MC3T3E1 cells had long processes which connected each other and formed network; but fusiform or cube cells were observed in group D at 21 days. The fluorescence intensity was increased gradually with time, was the highest at 14 days and the lowest at 28 days in group D; it was highest in groups A, B and C at 28 days, there were statistically significant differences when compared with group D (P lt; 0.05). The ALP activity was increased gradually with time, and it was the highest at 28 days in group D and at 21 days in groups A and B, there were significant differences (P lt; 0.05), no statistically significant differences compared with group D at other time points (P gt; 0.05). The mineral ization nodus were seen at 21 and 28 days in group A, but no mineral ization nodus was seen in group D at 28 days. The RT-PCR results showed the mRNA expressions of ALP and BSP were enhanced in group A when compared with group D (P lt; 0.05). Conclusion The osteogenic differentiation was most obvious and cell prol iferation was most active after 21 days of incubation in FG.
ObjectiveTo investigate the feasibility of small molecule compound XAV939 to induce mouse embryonic stem cells (mESC) to differentiate into cardiac myocytes. MethodsWe revived and cultured undifferentiated mESC growing confluently on trophoderm made of mouse embryonic inoblast cell. The mESCs were digested by trypsin to form embryoid bodies (EBs) by handing drop method. After plated, EBs were induced by XAV939 to differentiate into cardiac myocytes. We observed the cardiac myocytes with lightmicroscopy and identified it with immunofluorescence method. Result The XAV939 can effectively induce mESC into cardiac myocytes with the mean efficiency rate of 71.85%±1.05%. The differentiated cardiac myocytes shrinked spanteously and rhythmicly. The cardiac troponin T as the special marker of cardiac myocyte was positive. ConclusionThe small molecule compound XAV939 could effectively induce mES cells into cardiac myocytes.
ObjectiveTo investigate the expression of miRNA-1 in denervated skeletal muscle at different periods, and to explore effects of passive movement on the expression of miRNA-1 and differentiation of myoblasts in denervation-induced skeletal muscle atrophy in rats. MethodsTwenty-seven Sprague Dawley rats, weighing (200±10) g, were randomly divided into sham-operated group (group A, n=3), denervated group (group B, n=12), and passive movement group (group C, n=12). After the right sciatic nerve was exposed and dissociated, the sciatic nerve of 1 cm in length was removed in groups B and C; resection was not performed in group A. At 1 day after operation, passive flexion and extension movement was performed on the right hind limb in group C. At 6 hours in group A and at 3, 7, 14, and 28 days in groups B and C, 3 rats were sacrificed to measure the wet weight ratio of gastrocnemius muscle, to observe the diameter of the gastrocnemius muscle cell and evaluate the muscle atrophy by HE staining; RT-PCR was used to detect the mRNA expression of miRNA-1 and myocyte differentiation factor (MyoD), and immunohistochemistry to determine the protein expression of MyoD. ResultsAtrophy in various degrees was observed in denervated gastrocnemius muscle of groups B and C. The muscle fiber arranged in disorder and the diameter of the muscle cells decreased gradually with the time, without normal structure and morphology. The wet weight ratio and the cell diameter of the gastrocnemius in groups B and C were significantly less than those in group A (P<0.05); the wet weight ratio at 7, 14, 28 days and the cell diameter at 7, 14 days of group B were significantly greater than those of group A (P<0.05). The expressions of miRNA-1 and MyoD mRNA gradually increased with time in groups B and C, but were significantly less than those of group A at each time point (P<0.05). At 7, 14, and 28 days after operation, the expressions of miRNA-1 and MyoD mRNA in group C were significantly higher than those in group B (P<0.05). Immunohistochemical staining showed positive expression of MyoD in groups A, B, and C at each time point, but higher expression was observed in groups B and C than group A; the expression increased with time in groups B and C, and it was significantly higher in group C than group B. The correlation analysis results showed that the overall change trend of miRNA-1 and MyoD had no relation with the gastrocnemius wet weight ratio at 3 and 7 days (P>0.05), and had positive correlation at 14 and 28 days (P<0.05); positive correlation was found between the relative expression of MyoD and miRNA-1 mRNA (P<0.05). ConclusionPassive movement can prevent amyotrophy by increasing the expression of miRNA-1 and promoting the differentiation of myoblasts.
Objective To introduce the basic research and cl inical potential of the hair foll icle stem cells related signal transduction in prol iferation and differentiation. Methods The recent original articles about the hair foll icle stem cells were extensively reviewed. Results Many different signal pathways had been involved in the skin development and self-newals.The hair foll icle stem cells could play an important role in the skin self-renewal and regeneration which were modulated by several different signal pathways, which included bone morphogenetic protein/transforming growth factor β, Wnt, Notch and ectodysplasin A genes. Conclusion The hair foll icle stem cells may be a future approach to repair cutaneous wounds as a cell therapy.
Objective To observe the expression of miR-204 and 211 human embryonic stem cells (hESCs) differentiated into retinal pigment epithelial (RPE) cells. Methods RPE cells were derived from hESCs by natural differentiation method, and were identified. miRNA expression profiles and real-time polymerase chain reaction (RT-PCR) of miR-204 and 211 were generated from the following groups: hESCs, hESCs-derived cells containing pigmented foci, hESCs-derived RPE cells and human fetal RPE (hfRPE) cells. Results miRNA-204 was continuously upregulated throughout the entire differentiation process of hESCs to RPE cells. It increased 5.026 times in hESCs-derived cells containing pigmented foci compared to hfRPE cells; it was increased 3.337 times in hESCs-derived RPE cells compared to hESCs-derived cells containing pigmented foci; it increased 13.574 times in hfRPE cells compared to hESCs-derived RPE cells. miR-211 does not change during differentiation from hESC to RPE, but it increased 44.333 times in hESCderived RPE cells compared to hfRPE cells. miR-211 was the biggest difference in the miRNA expression pattern. In four cell types of hESCs, hESCs-derived cells containing pigmented foci, hESCs-derived RPE cells and hfRPE cells, RT-PCR showed the levels of miR-204 were 91.81plusmn;4.43, 2263.09plusmn;206.39, 5996.80plusmn;235.42, and 171676.45plusmn;999.82 respectively. miR-204 was significantly increased during the whole course (t=18.22, 20.66, 279.38;P<0.001). The levels of miR-211 were 2.23plusmn;0.31, 129.33plusmn;3.75, 125.7592plusmn;4.78, and 16682.00plusmn;352.97 respectively. miR-211 was significantly increased from hESCs to cells containing pigmented foci and from hESCs-derived RPE cells to hfRPE (t=58.58, 81.24; P<0.001). Conclusion There is a continuous change of miR-204 and 211 in differentiation of RPE cells from hESCs.
ObjectiveTo investigate the impact of L-Phenylalanine on the efficiency of retinal pigment epithelial (RPE) cell derivation from human embryonic stem cells (hESCs) and explore the underlying mechanisms. MethodsH1 hESCs were routinely cultured with mTeSR medium and divided into control and experimental groups. When cells reached over-confluence, spontaneous differentiation was triggered using 10% KSR differentiation medium without bFGF. L-Phenylalanine (0.2 mmol/L) was supplemented in the experimental group from the 3rd week. The expression of RPE markers and Wnt signaling components in the two groups was detected by Real time-RCR, Western blot and Flow cytometry analyses. Purified hESC-RPE cells and PBS were injected into the subretinal space of sodium iodine-induced retinal degeneration rats separately. Retinal function was assessed by ERG 6 weeks after the transplantation. ResultsOn the 7th week, much more pigment cell clumps appeared in the experimental group compared to the control group. Within these areas there were monolayer hexagonal RPE cells full of pigment granules. The experimental group showed significantly higher expression of Pax6, MITF, Tyrosinase, RPE65, Wnt3a, Lef1 and Tcf7 genes than the control group (P < 0.01). Higher expression level of MITF and RPE65 proteins and higher percentage of RPE65 (+) cells (P < 0.01) were detected in the experimental group. 6 weeks after sub-retinal transplantation of hESC-RPE cells, the amplitudes of a-b wave in the transplanted eyes were significantly higher than those in the control eyes (P < 0.01) at the stimulus intensity of 3.0 cd·s/m2. ConclusionsL-Phenylalanine effectively promoted the differentiation of embryonic stem cells into retinal pigment epithelial cells, and its impacts on the Wnt/β-catenin signaling pathway may partially explain the underlying mechanisms. Subretinal transplantation of hESC-RPE remarkably improved the retinal functions of retinal degenerative animal models.