Objective To explore the methods of repairing cartilagedefects and to introduce the clinical experience with the autologous osteochondral transplantation. Methods Twenty-five patients with chondral and osteochondral defects of the weight-bearing surfaces were treated by the autologous osteochondral transplantation for the repair of the chondral and osteochondral defects of the unweightbearing surfaces under arthroscope. According to the shape of the defects, the different dimensions of the osteochondral autograft were selected. All the patients began the training of the continuous passive motion after operation. Six weeks after operation, the patients began to walk in the weightbearing habitus. However, in the control group, another 25 patients were retrospectively analyzed, who had chondral and osteochondral defects of the weight-bearing surfaces but were treated only by the cleaning and drilling procedures. The scores evaluated bythe Brittberg-Peterson scoring scale of the 2 group were 98.65±9.87 and 96.98±8.94 respectively. Results The follow-upfor 3-24 months after operation revealed that the treated knee joint had a goodmotion extent. The pain was obviously alleviated. Based on the longitudinal study with the three-dimensional spoiled magnetic resonance imaging (MRI), the signal intensity of the repaired tissues approached to the normal condition. The scores evaluated by the Brittberg-Peterson scoring scale were almost zero 3 monthsafter operation in the experimental group, and the scores were 58.48±6.98 inthe control group. There were significant differences between the experimental group and the control group(P<0.01). Conclusion Autologous osteochondral transplanation under arthroscope is a good curative method for the cartilage defects, with advantages of minimal invasiveness and avoidanceofrejections resulting from allografts. However, its long-term effect needs to befurther studied. The conventional therapies including cleaning and drilling are useful in alleviating the symptoms.
Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To evaluate the immunological reaction and the outcome of allogeneic chondrocyte transplantation in repairing articular cartilage defects in porcins. Methods Full articular cartilage from the knee of two Shanghai white porcins about one-month-old was removed and cut mechanically, digested by 0.25% trypsin and 0.2% type Ⅱ collagenase and cultured in 10% DMEM medium. Defects of 0.5 cm×0.5 cm involving the subchodral bone were created in both the left and right femur condyloid in 8 two-month-old Yunnai bama porcins. Allogeneic chondrocyte transplantation were implanted in defects at a density of (1.0-2.0)×106,0.2 ml. The lymphocytes from the receivers’ blood were collected before transplantation and after 3, 5, 7 and 12 weeks of transplantation, then mixed with allogeneic chondrocytes to determin the lymphocyte stimulation index(SI) in vitro. The histological observation in vivo was made after 5, 7 and 24 weeks of transplantation. Results Lymphocyte SI at 3, 5, 7 and 12 weeks(1.457±0.062,1.739±0.142,1.548±0.047,1.216±0.028) after transplantation was higher than that before transplantation(1.102±0.034,Plt;0.05). SI began to increase in the 3rd week and reached the peak value in the 5th week, then gradually declined at the 7th and 12th weeks, showing significant differences when compared with in the 5th week (Plt;0.05). Inflammation and lymphocytes infiltration could be seen in subchondral bone and the intergration area between repair tissue and normal cartilage in the 5th week, and then decreased and limited in subchondral bone in the 7th week. Defects were filled with cartilage tissue, which had good intergration with subchondral bone at 24 weeks after transplantation. Conclusion Immunological reactions can be found at early stage of allogeneic chondrocyte transplantation and then decreased with the time, the fullthickness articular cartilage defects could be repaired mainlywith hyaline cartilage by the allogeneic chondrocyte transplantation. This may provide a new method to repair articular cartilage defects clinically.
Objective To investigate the curative effects of homograft of the mesenchymal stem cells(MSCs) compbined with the medical collagen membrane of the guided tissue regeneration(MCMG) on the full thickness defects of the articular cartilage. Methods MSCs derived from New Zealand rabbits aged 3-4 months weighing 2.1-3.4 kg were cultured in vitro with a density of 5.5×108/ml and seeded onto MCMG. The MSC/MCMG complex was cultured for 48 h and transplanted into the fullthickness defects on the inboardcondyle and trochlea. Twenty-seven healthy New Zealand rabbits were randomly divided into 3 groups of 9rabbits in each. The cartilage defects in the inboard condyle and trochlea werefilled with the auto bone marrow MSCs and MCMG complex (MSCs/ MCMG) in Group A (Management A), with only MCMG in Group B (Management B)and with nothing in Group C (Management C). Three rabbits were killed at 4, 8 and 12 weeks after operation in each group, and the reparative tissue samples evaluated grossly,histologically and immunohistochemically were graded according tothe gross and histological scale. Results Four weeks after transplantation, the cartilage and subchondralbone were regenerated in Group A;for 12 weeks, the regenerated cartilage gradually thicked; 12 week after transplantation, the defect was repaired and the structures of the carticular surface and subchondral bone was in integrity.The defects in Group A were repaired by the hylinelike tissue and the defects in Groups B and C were repaired by the fibrous tissues. Glycosaminoglycan and type Ⅱcollagen in Groups A,B and C were reduced gradually.The statistical analysis on the gross at 12 weeks and the histologicalgradings at 4 weeks,8 weeks and 12 weeks showed that the inboardcondylar repairhad no significant difference compared with the rochlearepair(Pgt;0.05).Management A was significantly better than Managements B and C (Plt;0.05), and Management B was better than Management C(Plt;0.05). Conclusion Transplantation of the MSCs combined with MCMG on the full thickness defects of the articular cartilage is a promising approach to the the treatment of cartilage defects. MCMG can satisfy the demands of the scaffold for the tissue-engineered cartilage.
Objective To explore the relationship of the limited resource of the autologous bone marrow mesenchymal stem cells (MSCs) in articularcavity to the treatment results of full-thickness articular cartilage defect, and to investigate whether the extrogenous sodium hyaluronate(SH) promotes the migration of MSCs cultured in vitro tothe articular defect in vivo. Methods Sixty-six Japan rabbits were made the model of the full-thickness articular cartilage defect (5 mm width and 4 mm depth).The autologous MSCs were extracted from the rabbit femur, cultured in vitro, labeledby Brdu, and injected into the injured articular cavity with or without SH. Theexperiment was divided into 4 groups; group A (MSCs and SH, n=15); group B (MSCs, n=15); group C (SH, n=18); and group D (non-treatment, n=18). The morphologic observation was made by HE staining, Mallory staining and immunohistochemical staining after 5 weeks, 8 weeks and 12 weeks of operation. Results There were significant differences in the thickness of repairing tissue between group A and group B(Plt;0.01); but there were no significant differences between group A and group C, and between group B and group D(P>0.05). Thehistological observation showed that the main repairing tissue was fibrocartilage in group A and fiber tissue in group B. Conclusion MSCs cultured in vitro and injected into the articular cavity can not improve the treatment results of the articular cartilage defect. Extrogenous SH has effect on repairing cartilage defect. The extrogenous SH has no effect on the chemotaxis of the MSCs, and on the collection of MSCs into the joint defect.
ObjectiveTo investigate the ability to repair osteochondral defect and the biocompatibility of porous tantalum loaded with bone morphogenetic protein 7 (BMP-7) by observing the effect of porous tantalum loaded with BMP-7 in repairing articular cartilage and subchondral bone defect. MethodsThe cartilage defect models of medial femoral condyle were established in 48 New Zealand white rabbits, which were randomly divided into 3 groups (n=16): porous tantalum material+BMP-7 (group A) and porous tantalum material (group B) were implanted into the right side of the medial femoral condyle; and no material was implanted as control (group C). The general condition of animals was observed after operation, then the specimens were harvested for gross observation, histological observation, and scanning electron microscope (SEM) observation at 4, 8, and 16 weeks after implantation, micro-CT was used to observe the cartilage and bone ingrowth and bone formation around porous tantalum at 16 weeks after implantation. ResultsNo animal died after operation and wound healed well. Gross observation showed that defects of groups A and B were covered with new cartilage with time, but earlier new cartilage formation and better repair were observed in group A than group B, no repair occurred at the site of bone defects, and defect surface was filled with fibrous tissue in group C. Cartilage repair gross score of group A was significantly higher than that of group B at 8 and 16 weeks (P < 0.05) but no significant difference was found between groups A and B at 4 weeks (P>0.05). SEM observation showed that the number of new cartilage and osteoblasts increased gradually with time, and the implanted material was gradually covered with the extracellular matrix, and the new bone tissue grew into the pores of the material; the neonatal bone tissue and extracellular matrix secretion of group A were significantly more than those of group B. The toluidine blue staining results showed that new cartilage and bone tissue gradually increased in the porous tantalum interface, and new bone trabecula formed and grew in the pores, the bone and the porous tantalum contact tended to close, and cartilage defect was gradually covered with cartilage like tissue, cartilage tissue and porous tantalum combined more closely in groups A and B at 4, 8 and 16 weeks. New cartilage and bone tissue of group A was more than that of group B. Micro-CT analysis indicated that the bone mineral density, trabecular thickness, trabecular number, and bone volume fraction of group A were significantly higher than those of group B at 16 weeks (P < 0.05), but the trabecular bone space was significantly lower than that of group B (P < 0.05). ConclusionThe domestic porous tantalum has good biocompatibility, domestic porous tantalum loaded with BMP-7 can promote the formation of a stable connection with the host and has a good effect on cartilage and subchondral bone defect repair.
OBJECTIVE To present a simple and reliable method for the reconstruction of metacarpophalangeal joint by the cartilage transplantation of metatarsophalangeal joint. METHODS From 1990, nine cases (11 sides) with traumatic metacarpophalangeal joint defect were treated by the autogenous cartilage transplantation of metatarsophalangeal joint followed by modified treatment. Appropriate biological mechanics was provided by internal fixation and collateral ligament repair. RESULTS Followed up 6 months to 7 years, the range of joint motion was increased 35.1 degrees. The fusion of donor phalanges was fine, and the range of joint motion was decreased, even ankylosis after plastic operation, but no pain and no effect on walk. CONCLUSION The key to successful operation is better matching of cartilage, reliable internal fixation, ligament reconstruction, thin cartilage and little bone of the donor, appropriate biological mechanical surroundings.
Objective To evaluate the effect of implantation of the complex of high viscous chitosan/glycerol phosphate with demineral ized bone matrix (HV-C/GP-DBM) in repairing cartilage defects of rabbits. Methods HV-C/ GPDBM was prepared by compounding HV-C/GP and DBM by 2:1 (W/W). Twenty-four 34-week-old New Zealand white adult rabbits, weighing 3.5-4.5 kg, were included. A bit with the diameter of 3.5 mm was used to drill 3-cm-deep holes in both sides of femoral condyle to make cartilage defects. The complex of HV-C/GP-DBM was then injected into the right holes as the experimental group and the left ones serve as the control group. The rabbits were killed at 4, 8 and 16 weeks after theoperation, respectively. The obtained specimens were observed macroscopically, microscopically and histologically. According to the International Cartilage Repair Society Histological Scoring (ICRS), the effect of cartilage repair was assessed at 16 weeks postoperatively. Results At 4-8 weeks postoperatively, in the experimental group, the defects were filled with hyal ine cartilage-l ike tissues; the majority of chitosan degradated; and the DBM particles were partly absorbed. However, in the control group, there were small quantities of discontinuous fibrous tissues and maldistributed chondrocytes at the border and the bottom of the defects. At 16 weeks postoperatively, 6 joints in the experimental group had smooth surface, and the defects were basically repaired by hyal ine cartilage-l ike tissues. The newly-formed tissues integrated well with the surrounding area. Under the cartilage, the new bone formation was still active and some DBM particles could be seen. However, the defects in the control group were repaired by fibrous tissues. The result of histological scoring of the specimens at 16 weeks showed that a total of 6 aspects including formation of chondrocytes and integration with the surrounding cartilages were superior in the experimental group to those in the control group, and there were significant differences between the two groups (P lt; 0.05). Conclusion The biodegradable and injectable complex of HV-C/GP-DBM with good histocompatibil ity and non-toxic side effects can repair cartilage defects and is a promising biomaterial for cartilage defect repair.
【Abstract】 Objective To compare the effect of PLGA and collagen sponge combined with rhBMP-2 on repairing ofarticular cartilage defect in rabbits respectively. Methods PLGA and collagen sponge were made into cyl inders which were 4 mm in diameter and 3 mm in thickness, and compounded with rhBMP-2 (0.5 mg). Defect 4 mm in diameter were made in both of femoral condyles of 24 two-month-old New Zealand white rabbits. The defects in right 18 knees were treated with PLGA/rhBMP-2 composites (experimental group 1), and the left 18 knees were treated with collagen sponge/rhBMP-2 composites (experimental group 2), the other 12 knees were left untreated as control group. At 4, 12 and 24 weeks after operation, the animals were sacrificed and the newly formed tissues were observed macroscopically and microscopically, graded histologically and analyzed statistically. Results From the results of macroscopical and microscopical observation, in the experimental group 1, the defects were filled with smooth and translucent cartilage; while in the experimental group 2, the white translucent tissues did notfill the defects completely; and in the two experimental groups, the new cartilage tissues demarcated from the surrounding cartilage,chondrocytes distributed uniformly but without direction; a l ittle fibrous tissue formed in the control group 4 weeks postoperatively. In the experimental group 1, the defects were filled completely with white, smooth and translucent cartilage tissue without clear l imit with normal cartilage; while in the experimental group 2, white translucent tissues formed, the boundary still could be recognized; in the two experimental groups, the thickness was similar to that of the normal cartilage; the cells paralleled to articular surface in the surface layer, but in the deep layer, the cells distributed confusedly, the staining of matrix was positive but a l ittle weak; subchondral bone and tide mark recovered and the new tissue finely incorporated with normal cartilage;however, in the control group, there was a l ittle of discontinuous fibrous tissue, chondrocytes maldistributed in the border andthe bottom of the defects 12 weeks postoperatively. In the experimental group 1, white translucent cartilage tissues formed, the boundary disappeared; in the experimental group 2, the color and the qual ity of new cartilage were similar to those of 12 weeks; in the two experimental groups, the thickness of the new cartilage, which appeared smooth, was similar to that of the normal cartilage, the chondrocytes arranged uniformly but confusedly; the staining of matrix was positive and subchondral bone and tide mark recovered, the new tissue finely incorporated with normal cartilage; in the control group, a layer of discontinuous fibrous tissue formed in the bottom of the defects 24 weeks postoperatively. Results of histological grade showed that there were significantdifference between experimental group (1 and 2) and control group at any time point (P lt; 0.01); the scores of 12 weeks and 24 weeks in experimental group 1 and 2 had a significant difference compared with that of 4 weeks (P lt; 0.01), there was no significant difference between 12 weeks and 24 weeks (P gt; 0.05), and there were no significant difference between the two experimental groups at the same time point (P gt; 0.05). Conclusion Both PLGA and collagen sponge as a carrier compounded with rhBMP-2 can repair articular cartilage defects.