The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.
Accurate segmentation of pediatric echocardiograms is a challenging task, because significant heart-size changes with age and faster heart rate lead to more blurred boundaries on cardiac ultrasound images compared with adults. To address these problems, a dual decoder network model combining channel attention and scale attention is proposed in this paper. Firstly, an attention-guided decoder with deep supervision strategy is used to obtain attention maps for the ventricular regions. Then, the generated ventricular attention is fed back to multiple layers of the network through skip connections to adjust the feature weights generated by the encoder and highlight the left and right ventricular areas. Finally, a scale attention module and a channel attention module are utilized to enhance the edge features of the left and right ventricles. The experimental results demonstrate that the proposed method in this paper achieves an average Dice coefficient of 90.63% in acquired bilateral ventricular segmentation dataset, which is better than some conventional and state-of-the-art methods in the field of medical image segmentation. More importantly, the method has a more accurate effect in segmenting the edge of the ventricle. The results of this paper can provide a new solution for pediatric echocardiographic bilateral ventricular segmentation and subsequent auxiliary diagnosis of congenital heart disease.
Deep learning-based automatic classification of diabetic retinopathy (DR) helps to enhance the accuracy and efficiency of auxiliary diagnosis. This paper presents an improved residual network model for classifying DR into five different severity levels. First, the convolution in the first layer of the residual network was replaced with three smaller convolutions to reduce the computational load of the network. Second, to address the issue of inaccurate classification due to minimal differences between different severity levels, a mixed attention mechanism was introduced to make the model focus more on the crucial features of the lesions. Finally, to better extract the morphological features of the lesions in DR images, cross-layer fusion convolutions were used instead of the conventional residual structure. To validate the effectiveness of the improved model, it was applied to the Kaggle Blindness Detection competition dataset APTOS2019. The experimental results demonstrated that the proposed model achieved a classification accuracy of 97.75% and a Kappa value of 0.971 7 for the five DR severity levels. Compared to some existing models, this approach shows significant advantages in classification accuracy and performance.
Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.
Speech imagery is an emerging brain-computer interface (BCI) paradigm with potential to provide effective communication for individuals with speech impairments. This study designed a Chinese speech imagery paradigm using three clinically relevant words—“Help me”, “Sit up” and “Turn over”—and collected electroencephalography (EEG) data from 15 healthy subjects. Based on the data, a Channel Attention Multi-Scale Convolutional Neural Network (CAM-Net) decoding algorithm was proposed, which combined multi-scale temporal convolutions with asymmetric spatial convolutions to extract multidimensional EEG features, and incorporated a channel attention mechanism along with a bidirectional long short-term memory network to perform channel weighting and capture temporal dependencies. Experimental results showed that CAM-Net achieved a classification accuracy of 48.54% in the three-class task, outperforming baseline models such as EEGNet and Deep ConvNet, and reached a highest accuracy of 64.17% in the binary classification between “Sit up” and “Turn over”. This work provides a promising approach for future Chinese speech imagery BCI research and applications.
Lung cancer is the most threatening tumor disease to human health. Early detection is crucial to improve the survival rate and recovery rate of lung cancer patients. Existing methods use the two-dimensional multi-view framework to learn lung nodules features and simply integrate multi-view features to achieve the classification of benign and malignant lung nodules. However, these methods suffer from the problems of not capturing the spatial features effectively and ignoring the variability of multi-views. Therefore, this paper proposes a three-dimensional (3D) multi-view convolutional neural network (MVCNN) framework. To further solve the problem of different views in the multi-view model, a 3D multi-view squeeze-and-excitation convolution neural network (MVSECNN) model is constructed by introducing the squeeze-and-excitation (SE) module in the feature fusion stage. Finally, statistical methods are used to analyze model predictions and doctor annotations. In the independent test set, the classification accuracy and sensitivity of the model were 96.04% and 98.59% respectively, which were higher than other state-of-the-art methods. The consistency score between the predictions of the model and the pathological diagnosis results was 0.948, which is significantly higher than that between the doctor annotations and the pathological diagnosis results. The methods presented in this paper can effectively learn the spatial heterogeneity of lung nodules and solve the problem of multi-view differences. At the same time, the classification of benign and malignant lung nodules can be achieved, which is of great significance for assisting doctors in clinical diagnosis.
Magnetic resonance (MR) imaging is an important tool for prostate cancer diagnosis, and accurate segmentation of MR prostate regions by computer-aided diagnostic techniques is important for the diagnosis of prostate cancer. In this paper, we propose an improved end-to-end three-dimensional image segmentation network using a deep learning approach to the traditional V-Net network (V-Net) network in order to provide more accurate image segmentation results. Firstly, we fused the soft attention mechanism into the traditional V-Net's jump connection, and combined short jump connection and small convolutional kernel to further improve the network segmentation accuracy. Then the prostate region was segmented using the Prostate MR Image Segmentation 2012 (PROMISE 12) challenge dataset, and the model was evaluated using the dice similarity coefficient (DSC) and Hausdorff distance (HD). The DSC and HD values of the segmented model could reach 0.903 and 3.912 mm, respectively. The experimental results show that the algorithm in this paper can provide more accurate three-dimensional segmentation results, which can accurately and efficiently segment prostate MR images and provide a reliable basis for clinical diagnosis and treatment.
Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.
To accurately capture and effectively integrate the spatiotemporal features of electroencephalogram (EEG) signals for the purpose of improving the accuracy of EEG-based emotion recognition, this paper proposes a new method combining independent component analysis-recurrence plot with an improved EfficientNet version 2 (EfficientNetV2). First, independent component analysis is used to extract independent components containing spatial information from key channels of the EEG signals. These components are then converted into two-dimensional images using recurrence plot to better extract emotional features from the temporal information. Finally, the two-dimensional images are input into an improved EfficientNetV2, which incorporates a global attention mechanism and a triplet attention mechanism, and the emotion classification is output by the fully connected layer. To validate the effectiveness of the proposed method, this study conducts comparative experiments, channel selection experiments and ablation experiments based on the Shanghai Jiao Tong University Emotion Electroencephalogram Dataset (SEED). The results demonstrate that the average recognition accuracy of our method is 96.77%, which is significantly superior to existing methods, offering a novel perspective for research on EEG-based emotion recognition.
Accurate segmentation of whole slide images is of great significance for the diagnosis of pancreatic cancer. However, developing an automatic model is challenging due to the complex content, limited samples, and high sample heterogeneity of pathological images. This paper presented a multi-tissue segmentation model for whole slide images of pancreatic cancer. We introduced an attention mechanism in building blocks, and designed a multi-task learning framework as well as proper auxiliary tasks to enhance model performance. The model was trained and tested with the pancreatic cancer pathological image dataset from Shanghai Changhai Hospital. And the data of TCGA, as an external independent validation cohort, was used for external validation. The F1 scores of the model exceeded 0.97 and 0.92 in the internal dataset and external dataset, respectively. Moreover, the generalization performance was also better than the baseline method significantly. These results demonstrate that the proposed model can accurately segment eight kinds of tissue regions in whole slide images of pancreatic cancer, which can provide reliable basis for clinical diagnosis.