Objective To explore the effect of age and gene therapyon the differentiation of marrow mesenchymal stem cells (MSCs) of the rats. Methods MSCs from the young (1-month-old), adult (9-month-old), and the aged(24monthold) rats were expanded in culture and infected with adenovirus mediated human bone morphogenetic protein 2 gene (Ad-BMP-2). The expression of BMP-2 and osteoblastic markers such as alkaline phosphatase(ALP), collagen Ⅰ(Col Ⅰ), bone sialoprotein(BSP) and osteopontin(OPN) were assayed during the process of differentiation. Their abilities to induce ectopic bone formation in nude mice were also tested. Results There was no significant difference in the expression of BMP-2 among the 3 groups. ALP activity assay and semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) demonstrated that there were no significant differences in the expression of osteoblastic markers ALP, Col-Ⅰ, OPN and BSP amongthe 3 groups. Histomorphometric analysis indicated that there were no significant differences in the volume of the newly formed ectopic bones in nude mice amongthe 3 groups. Conclusion MSCs obtained from the aged ratscan restore their osteogenic activity following human BMP-2 gene transduction, therefore provides an alternative to treating the aged bone disease.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To monitor the stem cell migration into the bone defect following an injection of the labeled mesenchymal stem cells (MSCs) by the enha nced green fluorescent protein (EGFP)technology and to provide insights into an application of MSCs for the fracture healing. Methods Isolated MSCs from the rabbit femur marrow were culture-expanded and were labeled by the transfection with the recombinant retrovirus containing the EGFP gene. Then, some labeled MSCs were cultured under the osteogenic differentiation condition and the phenotype was examined. After the fracture of their bilateral ulna, 18 rabbits were divide d into two groups. The labeled MSCs were injected into the aural vein at 1×107 cells/kg in the experimental group and the unmarked MSCs were injected in the control group 24 hours before surgery, and 1 and 24 hours after surgery, res pectively. Necropsies were performed 2 days after surgery in the two groups. The sections from the left defects were observed under the fluorescence microscope and the others were analyzed by the bright-field microscopy after the HE staining. Results The EGFP did not affect the MSCs viability. After the labeled cells were incubated in the osteogenic medium alkaline phosphatase, the calcium nodule s were observed. All the rabbits survived. The tissue of haematoma was observed in the bone defects and the fluorescent cells were found in the experimental gr oup, but no fluorescent cells existed in the control group. Conclusion The EG FP labeled MSCs can undergo osteogenic differentiation in vitro and can mig rate into bone defects after their being injected into the peripheral vein.
Objective To explore the in vitrodifferentiation of the rat mesenchymal stem cells (MSCs ) into the skeletal muscle cells induced by the myoblast differentiation factor (MyoD) and 5-azacytidine. Methods The MSCs were taken from the rat bone marrow and the suspension of MSCs was made and cultured in the homeothermia incubator which contained 5% CO2at 37℃. The cells were observed under the inverted phase contrast microscope daily. The cells spreading all the bottom of the culture bottle were defined as onepassage. The differentiation of the 3rd passage of MSCs was induced by the combination of 5-azacytidine, MyoD, transforming growth factor β1, and the insulin like growth factor 1. Nine days after the induction, the induced MSCs were collected, which were analyzed with the MTT chromatometry, theflow cytometry, and the immunohistochemistry. Results The primarily cultured MSCs grew as a colony on the walls of the culture bottle; after the culture for 5-7 days, the cells were shaped like the fibroblasts, the big flat polygonal cells, the medium sized polygonal cells, and the small triangle cells; after the culture for 12 days, the cells were found to be fused, spreadingall over the bottle bottom, but MSCs were unchanged too much in shape. After the induction by 5-azacytidine, some of the cells died, and the cells grew slowly. However, after the culture for 7 days, the cells grew remarkably, the cell volume increased gradually in a form of ellipse, fusiform or irregularity. After theculture for 14 days, the proliferated fusiform cells began to increase in a great amount. After the culture for 18-22 days, the myotubes increased in number and volume, with the nucleus increased in number, and the newly formed myotubes and the fusiform myoblst grew parallelly and separately. The immunohistochemistry for MSCs revealed that CD44 was positive in reaction, with the cytoplasm ina form of brown granules. And the nucleus had an obvious border,and CD34 was negative. The induced MSCs were found to be positive for desmin and specific myoglobulin of the skeletal muscle. The flow cytometry showed that most of the MSCs and the induced MSCs were in the stages of G0/G1,accounting for 79.4% and 62.9%,respectively; however, the cells in the stages of G2/S accounted for 20.6% and 36.1%. The growth curve was drawn based on MTT,which showed that MSCs weregreater in the growth speed than the induced MSCs. The two kinds of cells did not reach the platform stage,having a tendency to continuously proliferate.ConclusionIn vitro,the rat MSCs can be differentiated into the skeletal muscle cells with an induction by MyoD and 5-azacytidine, with a positive reaction for the desmin and the myoglobulin of the skeletal muscle. After the induction, the proliferation stage of MSCs can be increased, with a higher degree of the differentiation into the skeletal muscle.
Objective To review the advances in repair of spinal cord injury by transplantation of marrow mesenchymal stem cells(MSCs). Methods The related articles in recent years were extensively reviewed,the biological characteristic of MSCs,the experimental and clinical studies on repair of spinal cord injury by transplantation of MSCs,the machanisms of immigration and therapy and the problems were discussed and analysed. Results The experimental and clinical studies demonstrated that the great advances was made in repair of spinal cord injury by transplantation of MSCs. After transplantation, MSCs could immigrate to the position of spinal cord injury, and differentiate into nervelike cells and secrete neurotrophic factors.So it could promote repair of injuryed spinal cord and recovery of neurologicalfunction. Conclusion Transplantation of MSCs was one of effective ways in repair of spinal cord injury, but many problems remain to be resolved.
Objective To investigate the neural markers’ expression in the differentiation of marrow stromal stem cells(MSCs) into neural cells. Methods Rats MSCs were expanded as undifferentiated cells in vitro for 5 to7 generations and cultured in a modified neuronal medium(MNM) after 24 hours of all-trans retinoidacid(ATRA) pretreatment. Immunocytochemistry was used to detect the expression of nestin、neuron-specific nuclear protein(NeuN)、microtubule-associated protein2 (MAP-2) and glial fibrillary acidic protein(GFAP) at different timepoints. Results After ATRA and MNM treatment, MSCs progressively assumed neuronal morphological characteristics. Nestin occurred first after 24 hours of ATRA treatment; then NeuN expressed after 2 hours of MNM treatment; the last one was MAP-2 and it was detected after 9 hours of MNM treatment. Other markers continuously expressed except that the expression of nestin peaked after 18 hours of MNM induction and remarkably decreased after 36 hours. Conclusion ATRA and MNM could promote the differentiation of MSCs into neural cells and the expression of neural-specific markers was consistent with current knowledge regarding the timepoints of markers expression in the neuronal development which provides a good model in vitro for neuronal development research.
Objective To investigate the feasibility of imaging of bone marrow mesenchymal stem cells (BMMSCs) labeled with superparamagnetic iron oxide(SPIO) transplanted into coronary artery in vivo using magnetic resonance imaging (MRI), and the redistribution of the cells into other organs. Methods BMMSCs were isolated, cultured from bone marrow of Chinese mini swine, and double labeled with SPIO and CMDiI(Cell TrackerTM C-7001). The labeled cells were injected into left anterior descending coronary artery through a catheter. The injected cells were detected by using MRI at 1 week,3weeks after transplantation. And different organs were harvested and evaluated the redistribution of transplanted cells through pathology. Results The SPIO labeled BMMSCs injected into coronary artery could be detected through MRI and confirmed by pathology and maintained more than 3 weeks. The SPIO labeled cells could be clearly imaged as signal void lesions in the related artery. The pathology showed that the injected cells could be distributed into the area of related artery, and the cells injected into coronary artery could be found in the lung, spleen, kidney, but scarcely in the liver, the structures of these organs remained normal. Conclusion The SPIO labeled BMMSCs injected into coronary artery can be detected by using MRI, the transplanted cells can be redistributed into the non-targeted organs.
Objective To construct green fluorescent protein (GFP)/Akt fusion gene vector for observing the expression and localization of GFP/Akt in rats bone marrow-derived mesenchymal stem cells (MSCs). Stem cell factor (SCF) effected expression of c-kit, Akt and VEGF mRNA and protein in MSCs transfected by pEGFP-C1/Akt through PI3-Akt pathway.Methods Akt recombined GFP vector by restriction enzymes, MSCs was transfeced by GFP/Akt and GFP through cationic liposomes, and then veritied by restriction endonuclease assay and sequence analysis. Transfection and localization of GFP were evaluated by fluorescene microscopy. The expressions of c-kit, Akt and VEGF mRNA and protein were examined by RT-PCR and Western blot after MSCs transfected by pEGFP-C1 and pEGFP-C1/Akt. SCF effected the expression of c-kit, Akt and VEGF mRNA and protein after MSCs transfected by pEGFP-C1 and pEGFP-C1/Akt. Results Restriction endonuclease assay and sequence analysis verified that thesuccessfulconstructionoftherecombinantvectorpEGFP-C1/AktandefficienthighexpressionofpEGFP-C1/Akt fusion protein in the MSCs of rats. Under fluorescent microscence, green flurescence was seen homogeneously distributed in the entire cell of the cells transfected by the recombinant vector pEGFP-C1, and diffusely in the cytoplasm of the cells transfected by the recombinant vector pEGFP-C1/Akt. The expression of Akt and VEGF mRNA and protein were significantly higher in MSCs transfected by pEGFP-C1/Akt (plt;0.05). The expression of c-kit, Akt and VEGF mRNA and protein were significantly higher in experiment group (SCF+pEGFP-C1/Akt) and control group (SCF+pEGFP-C1), plt;0.05. In experiment group, SCF stimulation enhanced expression of Akt and VEGF mRNA and protein (plt;0.01). Conclusion GFP/Akt fusion gene vector is successfully construted and the fusion protein expressed in the MSCs of rats induces the expression of Akt and VEGF mRNA and protein. SCF stimulation enhanced expression of c-kit, Akt and VEGF mRNA and protein through PI3/Akt pathway.
Abstract: Objective To evaluate if cardiac function and myocardial perfusion in acute ischemia myocardial transplanted by autologous bone mesenchymal stem cells (MSC) can be improved. Methods Sixteen New Zealand rabbits were studied.The left anterior descending coronary artery under the first diagonally branch was ligated to result in acute myocardial ischemia models,the sixteen models were divided into two groups with randomed number table. Control group(n=8): 0.6ml αminimum essential medium was injected into myocardium; transplanted group (n=8): 0.6ml medium of autologous MSC marked with 5-bromium,2-deoxy-uridine (BrdU) was injected into myocardium. Echocardiography were erformed to measure left ventricular ejection fraction(LVEF),as well as the displacement and strain of apex segment of left ventricle pre-ichemia,beforeand 4 weeks after treatment; the target myocardial tissues were harvested 4 weeks after treatment,double immunohistochemistry staining of anti-BrdU and anti-troponin T(TnT) were used to evaluate the survival and differentiation of implanted MSC; immunohistochemistry staining of anti-CD146 endothelium factor were used to evaluate the density of capillary vessels in treated myocardium. Results Double immunohistochemistry staining showed that positive cells were found in transplanted group and not found in control group. Anti-CD146 immunohistochemistry staining showed density of capillary vessels of transplanted group was significantly more than that of control group(Plt;0.05) ; LVEF,displacement and strain of cardiac apex of transplanted group improved significantly more than those of control group(Plt;0.05). Conclusion Transplanted to acute myocardium ischemia models of rabbits, MSC can differentiate into myocardium-like cells in myocardial microenvironment,and improve global and part cardiac systolic function and then improving perfusion of ischemia myocardium.