ObjectiveTo investigate the role of amygdala volume index(AVI) in surgcial evaluation in patients with mesial temporal lobe epilepsy (mTLE), including clinical features, etiologies and surgical outcome. MethodsThirty six patients were diagnosed as mTLE after surgical evaluation including clinical manifestations, video-electroencephalogram (VEEG) and magnetic resonance imaging (MRI) at the Second Affiliated Hospital of Zhejiang University between March 2013 and March 2016. Bilateral amygdala AVI was then calculated from amygdala volumes on MRI, which were measured with region of interest (ROI) analysis. All patients were treated surgically. Etiologies of mTLE were further confirmed by the histopathology of the resected tissue. ResultsAmong the 35 patients, there is a strong correlation between AVI on the lesion side and age of onset (R =-0.389, P = 0.019) as well as age of surgery (R =-0.357, P = 0.032). No obvious relation can be seen between AVI and gender, history of febrile convulsion, duration of epilepsy, secondary generalized seizure, side of lesion, presurgical seizure frequency and electrode implantation. There is no significant difference in AVI among the five etiologies. At follow-up, thirty patients (80.5%) reached seizure-free, AVI on the lesion side is nota predictor of surgical failure (P > 0.05). ConclusionAVI plays a role in etiology evaluation in patients with mesial temporal lobe epilepsy. Moreover, a larger AVI on the lesion side is correlated with an earlier age of onset. There is limited value of amygdala volume insurgical outcome prediction of patients with mTLE.
ObjectiveTo explore the clinical features and surgical treatment effects of the temporal lobe epilepsy with hippocampal sclerosis.MethodsForty two patients diagnosed as temporal lobe epilepsy with hippocampal sclerosis and underwent protemporal lobectomy in Wuhan Brain Hospital from Jan. 2012 to Dec. 2018 were collected, which included 30 males and 12 females, with the age between 9 to 60 years. Their disease duration ranged from 3 to 10 years. The clinical manifestations showed complex partial seizure in 18 cases, partial-secondary –generalized seizure in 4 cases, and generalized tonic-clonic seizure in 20 cases. Based on their results of clinical manifestations, combined with MRI and VEEG results, all the patients underwent anterior temporal lobectomy (including the most parts of the hippocampus and amydala).ResultsThe postoperative pathology confirmed the diagnosis of hippocampal sclerosis. The follow-up of more than 1 year showed seizure-free in 38 cases, and significant improvement in 4 cases.ConclusionsTo the patients of temporal lobe epilepsy with hippocampal sclerosis, anterior temporal lobectomy should be performed (including the most parts of the hippocampus and amydala) if the VEEG monitoring results show that there are epileptic discharges in the ipsilateral temporal lobe. And the postoperative curative result is satisfactory.
ObjectiveThe abnormal autophagy fluxis involved in the pathophysiological process of drug-resistance temporal lobe epilepsy (TLE).Hippocampal sclerosis (HS) is the main pathological type of drug-resistance TLE.Different subtypes of HS have various prognosis, etiology and pathophysiology.However, whether theabnormal block ofautophagy flux involved in this process has not been reported.This study proposed a preliminary comparison of autophagy fluxin typical and atypical HS to investigate the potential pathogenesis and drug-resistance mechanism of atypical HS. MethodsSurgical excision of hippocampal and temporal lobe epilepsy foci were performed in 17 patients with drug-resistance TLE.Patients were grouped according to the HS classification issued by International League Against Epilepsy in 2013.The distribution and expression of LC3B, beclin-1 and P62 were detected by immunohistochemistry and Western blot in each group. ResultsLC3B, beclin-1 and P62 are mainly expressed in neuronal cytoplasm, which is consistent with previous reports.Taking β-actin as internal reference, we found that LC3B and Beclin-1, the downstream products of autophagy flux, have increased significantly (P < 0.01) in the atypical HS group compared to typical HS group.However, the autophagy flux substrate P62 has no difference between the groups.This result suggested that compared with the typical HS group, atypical HS group had autophagy substrate accumulation and autophagy flux abnormal block.Besides, we found that glyceraldehycle-3-phosphate dehydrogenase(GAPDH) was significantly different between the two groups (P=0.003). ConclusionThere is abnormal phenomenon of autophagy flux in atypical HS, and GAPDH elevation may be involved in its mechanism, which might provide new targets and ideas for future treatment of atypical HS.
Objective To identify the most consistent and replicable characteristics of altered spontaneous brain activity in mesial temporal lobe epilepsy patients with unilateral hippocampal sclerosis (MTLE-HS). Methods A systematic literature search was performed in PubMed, Embase, The Cochrane Library, China National Knowledge Infrastructure, Wanfang, and CQVIP databases, to identify eligible whole-brain resting state functional magnetic resonance imaging studies that had measured differences in amplitude of low-frequency fluctuations or fractional amplitude of low-frequency fluctuations between patients with MTLE-HS and healthy controls from January 2000 to January 2019. After literature screening and data extraction, Anisotropic Effect-Size Signed Differential Mapping software was used for voxel based pooled meta-analysis. Results Nine datasets from six studies were finally included, which contained 207 MTLE-HS patients and 239 healthy controls. The results demonstrated that, compared with the healthy controls, the MTLE-HS patients showed increased spontaneous brain activity in right hippocampus and parahippocampal gyrus, right superior temporal gyrus, left cingulate gyrus, right fusiform gyrus, and right inferior temporal gyrus; while decreased spontaneous brain activity in left superior frontal gyrus, right angular gyrus, right middle frontal gyrus, left inferior parietal lobule, left precuneus, and right cerebellum (P<0.005, cluster extent≥10). Conclusion The current meta-analysis demonstrates that patients with MTLE-HS show increased spontaneous brain activity in lateral and mesial temporal regions and decreased spontaneous brain activity in default mode network, which preliminarily clarifies the characteristics of altered spontaneous brain activity in patients with MTLE-HS.
Temporal lobe epilepsy is the most common type of epilepsy in clinic. In recent years, many studies have found that patients with temporal lobe epilepsy have different degrees of influence in executive function related fields. This influence may not only exist in a certain field of executive function, but may be affected in several fields, and may be related to the origin site of seizures. However, up to now, there is no unified standard for the composition of executive function, and it is widely accepted that the three core components of executive function are working memory, inhibitory control and cognitive flexibility/switching. In addition, the International League Against Epilepsy proposed a new definition in 2010, and epilepsy is a brain network disease. There is a close relationship between brain neural network and cognitive impairment. According to the cognitive field, the brain neural network can be divided into six types: default mode network, salience network, executive control network, dorsal attention network, somatic motor network and visual network. In recent years, there has been increasing evidence that four related internal brain networks are series in a range of cognitive processes. The executive dysfunction of temporal lobe epilepsy may be related to the changes of functional connectivity of neural network, and may be related to the left uncinate fasciculus. This article reviews the research progress related to executive function in temporal lobe epilepsy from working memory, inhibitory control and cognitive flexibility, and discusses the correlation between the changes of temporal lobe epilepsy neural network and executive function research.