west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "雷帕霉素靶蛋白" 13 results
  • Progress of mTOR Signal Pathway in Chemo-Resistance of Gastric Cancer

    Objective To review the role of mTOR signal pathway in chemo-resistance of gastric cancer. Methods Domestic and international publications related mTOR signal pathway in chemo-resistance of gastric cancer in recent years were collected and reviewed. Results mTOR was a central signaling molecule of mTOR signal pathway, which regulated key cellular processes such as cell growth, cell proliferation, cell metabolism, and angiogenesis. Signaling molecules of mTOR signal pathway were overexpressed in gastric cancer. Moreover, mTOR signal pathway might play an important role in chemo-resistance of gastric cancer, and tumor stem cells were involved in it too. Conclusion As mTOR signal pathway plays an important role in chemo-resistance of gastric cancer, the combination of mTOR inhibitors and chemotherapy drugs may overcome the chemo-resistance of gastric cancer.

    Release date: Export PDF Favorites Scan
  • Effects of rapamycin and deferoxamin on wound healing after ischemia and hypoxia

    Objective To explore the effect and mechanism of rapamycin and deferoxamin on wound healing after ischemia and hypoxia. Methods The model of ischemia and hypoxia wound was made on the back of 40 SPF male adult Sprague Dawley rats, weight (300±20) g; they were randomly divided into 4 groups (n=10): the control group (group A), deferoxamine intervention group (group B), rapamycin intervention group (group C), and deferoxamine+rapamycin intervention group (group D). At 3, 6, and 9 days after model preparation, rats of groups A, B, C, and D were intra-peritoneally injected with normal saline, deferoxamin (10 mg/kg), rapamycin (3 mg/kg), deferoxamin (10 mg/kg)+rapamycin (3 mg/kg) respectively. The wound healing was observed and the healing time was recorded in each group; the wound healing tissue was harvested to test the mRNA and protein expressions of mammalian target of rapamycin (mTOR), hypoxia inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF) by real-time fluorescence quantitative PCR and Western blot at 2 days after wound healing. Results All rats survived to the end of the experiment, and wounds healed; the healing time of groups A, B, and D was significantly shorter than that of group C (P<0.05), but there was no significant difference between groups A, B, and D (P>0.05). Real-time fluorescence quantitative PCR showed that the expression of mTOR mRNA in groups C and D was significantly decreased when compared with the expressions in groups A and B (P<0.05); there was significant difference between groups A and B (P<0.05), but no significant difference between groups C and D (P>0.05). The expressions of HIF-1α mRNA and VEGF mRNA were signi-ficantly higher in groups B and D than groups A and C, and in group A than group C (P<0.05), but there was no signifi-cant difference between groups B and D (P>0.05). Western blot showed that the relative expressions of mTOR protein in groups C and D were significantly decreased when compared with the expressions in groups A and B (P<0.05), but there was no significant difference between groups C and D (P>0.05). The relative expressions of HIF-1α protein in groups A, B, and C were significantly increased when compared with expression in group D (P<0.05), but there was no significant difference between groups A, B, and C (P>0.05). The relative expression of VEGF protein were significantly lower in groups B, C, and D than group A, in group D than groups B and C, and in group C than group B (P<0.05). Conclusion Defe-roxamin can promote the wound healing of rats after ischemia and hypoxia, and the effect of rapamycin is opposite. It may be related to the existence of mTOR and HIF-1 signaling pathway in chronic ischemia-hypoxia wound.

    Release date:2017-06-15 10:04 Export PDF Favorites Scan
  • 局灶性皮质发育不良的病理机制

    局灶性皮质发育不良(Focal cortical dysplasias, FCDs)是儿童难治性癫痫的常见病因,也是常需癫痫手术的原因。尽管近年来在细胞和分子生物上的进展,FCDs的病理机制仍不清楚。该研究旨在回顾FCDs的分子机制,系统地检索FCDs组织、分子和电生理方面的文献,以明确可能的治疗靶点。哺乳动物雷帕霉素靶蛋白信号通路(mammalian target of rapamycin,mTOR)是一些FCDs结构和电生理紊乱的重要机制。其他的假说包括病毒感染、早产、头部外伤和脑肿瘤。mTOR抑制剂(如:雷帕霉素)在动物和少量FCDs患者的队列癫痫控制中取得阳性结果。近期研究在发育不良组织细胞的分子和电生理机制方面取得了令人鼓舞的进展。尽管mTOR抑制剂有良好的治疗前景,但仍需大规模的随机对照研究评估其有效性和不良反应,并且需要基础研究发现新的分子水平诊断和治疗方式。

    Release date:2016-11-28 01:27 Export PDF Favorites Scan
  • High glucose consumption promoted invasion and migration in colorectal cancer through suppressing ferritinophagy via activating the RAGE/mTOR pathway

    Objective To explore the influence and mechanism of mechanistic target of rapamycin kinase (mTOR)/ receptor of advanced glycation end products (RAGE) pathway mediated-ferritinophagy on high glucose consumption promoting invasion and migration of colorectal cancer (CRC). Methods① Patients and tissue samples. Clinical data and tissues were collected from CRC patients underwent surgery and completed the dietary questionnaire in the Second Affiliated Hospital of Harbin Medical University from October 2022 to October 2023. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to analyzed the expression of nuclear receptor coactivator 4 (NCOA4) and ferritin in CRC and para-carcinoma tissues. ② Cell culture and treatment. The HT29 and HCT116 cells were treated by RPMI1640 medium containing 0, 35, 70, 105, 140 mmol/L glucose, and cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity analysis were performed to confirm 105 mmol/L glucose was the optimal concentration in the current study. Then the HT29 and HCT116 cells were randomly divided into: control group, glucose group; control group, glucose group, si-RAGE group, and glucose+si-RAGE group; control group, glucose group, rapamycin group, and glucose+rapamycin group. Untreated HT29 and HCT116 cells were considered as control group. The cells in glucose group were treated with 105 mmol/L glucose for 48 h. The CRC cells in the si-RAGE group were transfected with si-RAGE for 6 h. The CRC cells in the rapamycin group were treated with 10 nmol/L rapamycin for 48 h. The CRC cells in the glucose+si-RAGE group were treated with 105 mmol/L glucose for 48 h combination transfected with si-RAGE for 6 h. The CRC cells in the glucose+rapamycin group were treated with 105 mmol/L glucose for 48 h combination treated with 10 nmol/L rapamycin for 48 h. Then electron microscopy and Western blot, wound healing assay and transwell assay were exhibited, respectively. ③ Azoxymethane (AOM)-induced CRC rat model. The effects of glucose consumption on malignant behavior and ferritinophagy mediated by mTOR/RAGE pathway were evaluated in AOM-induced CRC rat models. A total of 16 rats were randomly divided into control group and glucose group, the CRC number was recorded and HE staining of CRC tissues was further performed. The expression of RAGE, mTOR, NCOA4, and ferritin in colorectal tissues of rats from each group was detected by RT-qPCR. Results① More lymphatic node metastasis and TNM Ⅲ/Ⅳ stages were observed in CRC patients from high glucose consumption group (P=0.004, P=0.004). Moreover, we confirmed that NCOA4 expression was significantly decreased (P<0.001) while ferritin was significantly increased (P<0.001) in CRC tissues especially in the CRC tissues from patients with positive lymph nodes metastasis. ② High glucose treatment significantly decreased autophagosomes in HT29 and HCT116 cells while si-RAGE transfection increased autophagic vacuoles compared to the control group. When compared with the glucose group, autophagosomes were increased in the glucose+si-RAGE group. Moreover, compared to the control group, the expressions of RAGE, p-mTOR, and ferritin were increased (P<0.001) while the expression of NCOA4 was decreased (P<0.001) in glucose group, but the expressions of RAGE, p-mTOR, and ferritin were decreased (P<0.001) while the expression of NCOA4 was increased (P<0.001) in the si-RAGE group; when compared with the glucose group, the expressions of RAGE, p-mTOR, and ferritin were downregulated (P<0.001) while the expression of NCOA4 was upregulated (P<0.001) in HT29 and HCT116 cells from the glucose+si-RAGE group. Compared to the control group, the HT29 and HCT116 cells in the glucose group performed enhanced wound scratch healing , migration and invasion viabilities (P<0.05); but the HT29 and HCT116 cells in the si-RAGE group performed impaired wound scratch healing, migration and invasion viabilities (P<0.05). When compared with the glucose group, the HT29 and HCT116 cells in the glucose+si-RAGE group performed impaired wound scratch healing, migration and invasion viabilities (P<0.05). ③ Rapamycin treatment significantly inhibited the expression of ferritin (P<0.05) but induced the expression of NCOA4 (P<0.05) compared to the control group. When compared with the glucose group, the expression of ferritin was downregulated (P<0.05) while the expression of NCOA4 was upregulated (P<0.05) in HT29 and HCT116 cells from the glucose+rapamycin group. Additionally, compared to the control group, rapamycin treatment performed inhibited effect on wound scratch healing, migration and invasion viabilities in the HT29 and HCT116 cells (P<0.05); while the HT29 and HCT116 cells in the glucose+rapamycin group performed impaired wound scratch healing, migration and invasion viabilities (P<0.05) when compared with the glucose group. ④ In the AOM induced CRC rat models, we found the more CRCs, aggravated cellular pleomorphism and upregulated expressions of RAGE, mTOR, ferritin (P<0.05) while downregulated expression of NCOA4 (P<0.05) in the glucose group than those of the control group. ConclusionHigh glucose consumption promote invasion and migration in CRC through suppressing ferritinophagy via activating the mTOR/RAGE pathway.

    Release date:2025-04-21 01:06 Export PDF Favorites Scan
  • ADENOSINE-TRIPHOSPHATE PROMOTING REPAIR OF SPINAL CORD INJURY BY ACTIVATING MAMMALIAN TARGET OF RAPAMYCIN/SIGNAL TRANSDUCERS AND ACTIVATORS OF TRANSCRIPTION 3 SIGNAL PATHWAY IN RATS

    Objective To investigate the mechanism of adenosine-tri phosphate (ATP) activated mammal ian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signal pathway in the physiology and pathology of spinal cord injury (SCI). Methods Ninety-six adult healthy female Sprague-Dawley rats were randomly divided into 4 groups (groups A, B, C and D, n=24). In groups A, B and C, the rats were made the SCI models at T8-10 levels by using a modified Allen’ s stall, and in group D, rats were given laminectomy without SCI. The rats were subjected to the administration of ATP (40 mg/kg) for 7 days in group A, to the administration of physiological sal ine (equal-volume) for 7 days in group B, to the administration of ATP (40 mg/kg) and rapamycin (3 mg/kg) for 7 days in group C, and to the administration of physiological sal ine (equal-volume) for 7 days in group D. Locomotor activity was evaluated using the Basso-Beattie-Bresnahan rating scale at the postoperative 1st, 2nd, 3rd, and 4th weeks. Then, the expressions of spinal cord cell marker [Nestin, neuron-specific enolase (NSE), gl ial fibrillary acidic protein (GFAP)] and the mTOR/STAT3 pathway factors (mTOR, STAT3) were detected at the postoperative 1st, 2nd, 3rd, and 4th weeks by immunohistochemistry analysis, Western blot assay, and real-time fluorescence PCR analysis. Results The BBB scores in group A showed a steady increase in the postoperative 1st-4th weeks and were significantly higher than those in groups B and C (P lt; 0.01), but were lower than that in group D (P lt; 0.01). Real-time fluorescence PCR results showed that the mRNA expressions of mTOR, STAT3, NSE of group A steadily increased, however, the Nestin mRNA expression gradually decreased in the postoperative 1st-4th weeks, which were all significantly higher than those of groups B, C, and D (P lt; 0.01). The mRNA expression of GFAP showed a steady increase in group A and was significantly less than those of groups B and C, but was higher than that of group D (P lt; 0.01). There were significant differences (Plt; 0.01) in all markers between groups B, C, and group D; there were significant differences in mTOR, P-mTOR, STAT3, and P-STAT3 mRNA between groups B and C at 1st-4th weeks (P lt; 0.05). The similar changes were found by Western blot assay. Conclusion ATP can activate the mTOR/STAT3 pathway to induce endogenic NSCs to prol iferate and differentiate into neurons in rats, it enhances the heal ing of SCI.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • PROGRESS AND EXTENSIVE MEANING OF MAMMALIAN TARGET OF RAPAMYCIN INVOLVED INRESTORATION OF NERVOUS SYSTEM INJURY

    Objective To review the possible mechanisms of the mammal ian target of rapamycin (mTOR) in theneuronal restoration process after nervous system injury. Methods The related l iterature on mTOR in the restoration ofnervous system injury was extensively reviewed and comprehensively analyzed. Results mTOR can integrate signals fromextracellular stress and then plays a critical role in the regulation of various cell biological processes, thus contributes to therestoration of nervous system injury. Conclusion Regulating the activity of mTOR signaling pathway in different aspects cancontribute to the restoration of nervous system injury via different mechanisms, especially in the stress-induced brain injury.mTOR may be a potential target for neuronal restoration mechanism after nervous system injury.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • Effect of Dexamethasone on Mammalian Target of Rapamycin Expression of Astrocytes in Hippocampus of Rats with Sepsis Associated Encephalopathy

    ObjectiveTo investigate the effect of dexamethasone on mammalian target of rapamycin (mTOR) expression of astrocytes in hippocampus of rats with sepsis associated encephalopathy (SAE). MethodsTotally, 90 cases of 30-day-old male Wistar rats were randomly divided into sham-operation group (n=10) and cecal ligation and puncture (CLP) group (n=80). Models of rats with sepsis were established by CLP. At 12 hours after CLP, if rats appeared lower neurobehavioral scores, abnormal electroencephalogram (EEG) and somatosensory evoked potential (SEP), they were diagnosed with SAE. And then, they were randomly divided into non-treated group and dexamethasone group. Rats in the dexamethasone group were injected with dexamethasone (1 mg/kg) via tail vein every other day for a total of 3 times. The same dose of saline was used in the non-treated group. The neurobehavioral score was measured, SEP and EEG were examined in the age of 40 days, and then the rats were killed and the hippocampus was taken. Expressions of mTOR protein were measured by Western blot. The glial fibrillary acidic protein (GFAP) and mTOR were detected by immunofluorescence assay, and the number of positive cells was calculated by image analysis system software. ResultsSix of 80 CLP rats died in 12 hours after operation, and 28 of 74 rats were diagnosed as SAE because they appeared lower neurobehavioral scores, abnormal EEG and SEP at 12 hours after CLP. The incidence of SAE was 37.84% (28/74). In the age of 40 days, compared with non-treated group, neurobehavioral score of rats in the dexamethasone group was low, the amount of alpha waves in EEG reduced, delta waves increased, the amplitude of P1 waves in SEP was decreased, and the latencies of P1 and N1 waves were prolonged (P<0.05). GFAP immunofluorescence staining showed astrocytic body and processes were small in the sham operation group. However, astrocytes in the non-treated group had large body and hypertrophic processes, and compared with the sham operation group, the number of these cells increased significantly (P<0.05). Astrocytic body and processes were small in the dexamethasone group compared with the non-treated group, and the number of cells also decreased (P<0.05). The mTOR positive astrocytes in the non-treated group were more than those in the sham operation group (P<0.05). But mTOR positive astrocytes in the dexamethasone group were fewer than those in the non-treated group (P<0.05). ConclusionsAstrocytes are activated in the hippocampus of rats with SAE. They show features of reactive hyperplasia, and the expression of mTOR is up-regulated, while dexamethasone can inhibit effects on these.

    Release date: Export PDF Favorites Scan
  • 海马苔藓纤维出芽分子机制及在颞叶癫痫中的作用

    颞叶癫痫是难治性癫痫中最常见的类型,苔藓纤维出芽(Mossy fiber sproutinggranular, MFS)是颞叶癫痫患者最特征性的病理变化,但其分子信号通路及在颞叶癫痫中的作用至今还未明确。现综述近年有关MFS的信号通路及其在颞叶癫痫中作用。首先从颗粒细胞轴突出芽相关的信号通路进行阐述,主要包括细胞外信号调节激酶通路调节神经元胞体和轴突生长发育的作用,还有雷帕霉素靶蛋白转导通路对痫性发作的影响以及调节细胞增殖、突触重塑的作用。然后进一步阐述MFS到底促进还是抑制癫痫的发生以及与颞叶癫痫的因果关系。为颞叶癫痫的发生机制及治疗提供新思路。

    Release date: Export PDF Favorites Scan
  • 哺乳动物雷帕霉素靶蛋白信号通路与淋巴瘤的治疗研究进展

    哺乳动物雷帕霉素靶蛋白(mTOR)广泛存在于细胞中,可感受来自于细胞内外的信号,调节细胞增殖、生长、细胞凋亡、血管生成及调控细胞周期。mTOR信号传导通路的活化与多种肿瘤相关,多项对血液系统恶性疾病的研究表明,其与白血病、淋巴瘤的发病密切相关。现对mTOR信号通路的组成及其作用机制进行阐述,并着重对mTOR信号通路抑制剂与多种淋巴瘤的治疗研究进行综述。

    Release date: Export PDF Favorites Scan
  • The expression of p-mammalian target of rapamycin in non-small-cell lung cancer and its prognostic significance

    Objective To study the p-mammalian target of rapamyein(p-roTOR)expression and its prognostic significance in non-small cell lung cancer(NSCLC).Methods Immunohistochemical staining of EnVision was applied to investigate the expression of p-roTOR in lung specimens from 59 cases with NSCLC and 10 cases with benign pulmonary diseases(3 pulmonary tuberculosises and 7 inflammatory pseudotumors 1.Results The positive rate of p-mTOR was 40.7% in NSCLC which was significantly higher than that in the benign pulmonary diseases(x =6.237,P=0.013).The expression of p-mTOR was closely correlated with age,sex and pTNM stage.Kaplan-Meire survival analysis revealed that the expression of p-mTOR was not correlated significantly with survival days(Log rank test P =0.055).Conclusion P-mTOR might be a biomark for differential diagnosis of malignant lung disease,but has poor prognostic value.

    Release date:2016-09-14 11:57 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content