west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "转化生长因子-" 39 results
  • The potential role of long non-coding RNA Dnm3os in the activation of cardiac fibroblasts

    Long non-coding RNA (lncRNA) Dnm3os plays a critical role in peritendinous fibrosis and pulmonary fibrosis, but its role in the process of cardiac fibrosis is still unclear. Therefore, we carried out study by using the myocardial fibrotic tissues obtained by thoracic aortic constriction (TAC) in an early study of our group, and the in vitro cardiac fibroblast activation model induced by transforming growth factor-β1 (TGF-β1). Quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and collagen gel contraction test were used to identify the changes of activation phenotype and the expression of Dnm3os in cardiac fibroblasts. Small interfering RNA was used to silence Dnm3os to explore its role in the activation of cardiac fibroblasts. The results showed that the expression of Dnm3os was increased significantly in myocardial fibrotic tissues and in the activated cardiac fibroblasts. And the activation of cardiac fibroblasts could be alleviated by Dnm3os silencing. Furthermore, the TGF-β1/Smad2/3 pathway was activated during the process of cardiac fibroblasts activation, while was inhibited after silencing Dnm3os. The results suggest that Dnm3os silencing may affect the process of cardiac fibroblast activation by inhibiting TGF-β1/Smad2/3 signal pathway. Therefore, interfering with the expression of lncRNA Dnm3os may be a potential target for the treatment of cardiac fibrosis.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Transplanted Hepatocellular Carcinoma of Nude Mice Treated by Adenovirus Mediated mda-7 Combined with Adriamycin

    Objective To investigate the effects of adenovirus-mediated melanoma differentiation-associated gene-7 (mda-7)/IL-24 and/or adriamycin (ADM) on transplanted human hepatoma in nude mice and to explore a new way for hepatoma gene therapy combined with chemotherapy. Methods The recombinant adenovirus vector carrying Ad.mda-7 was constructed; Ad.mda-7 and/or ADM were injected into the tumor-bearing mice. Their effects on the growth of the tumor and the survival time of the mice were observed. The expressions of VEGF and TGF-β1 were detected by an immunohistochemistry method. Results Ad.mda-7 was constructed and expressed in vivo successfully. Compared with other three groups 〔control group (43.4±1.67) d, ADM group (64.2±4.14) d, Ad.mda-7 group (61.4±1.67) d〕, the mice treated with Ad.mda-7 combined with ADM had longer average survival time 〔(83.8±4.82) d, P<0.01〕; the average size of tumor treated with Ad.mda-7 combined with ADM diminished significantly compared with that treated with ADM or Ad.mda-7 separately (P<0.01). VEGF and TGF-β1 expressions of Ad.mda-7 group were (56.2±7.7)%, (35.2±4.5)%, respectively, and were lower than those in ADM group (VEGF: P<0.05; TGF-β1: P<0.01). VEGF expression of Ad.mda-7+ADM group was (37.3±5.0)%, and was significantly lower than that in other three groups (P<0.01). TGF-β1 expression of Ad.mda-7+ADM group was (31.2±3.1)% and significantly lower than that in control group and ADM group (P<0.01), however, there was no significant difference compared with Ad.mda-7 group (Pgt;0.05). Conclusion Ad.mda-7 combined with ADM has b antitumor potency and synergistic effects and suppresses the growth of human HCC xenograft in nude mice, possibly by inducing the apoptosis of hepatoma cell lines and suppressing tumor angiogenesis.

    Release date:2016-09-08 11:47 Export PDF Favorites Scan
  • BASIC FIBROBLAST GROWTH FACTOR INHIBITS PROMOTER ACTIVETIES OF HUMAN α1(I) PROCOLLAGEN GENE INDUCED BY TRANSFORMING GROWTH FACTOR-β1

    OBJECTIVE: To investigate the effects of basic fibroblast growth factor (bFGF) on the promoter activities of human alpha 1(I) procollagen gene and the interaction between bFGF and transforming growth factor-beta 1 (TGF-beta 1). METHODS: Fibroblasts of the hypertrophic scar and normal skin from a 3-year-old patient were primarily cultured and subcultured in vitro. Both of the fibroblasts were transient transfected with phCOL 2.5, containing -2.5 kb of 5’f lank sequence of human alpha 1(I) procollagen gene and CAT reporter gene by FuGENE transfection reagent; and treated thereafter by 16 ng/ml bFGF, 2 ng/ml TGF-beta 1 and 16 ng/ml bFGF + 2 ng/ml TGF beta 1 for 24 hours. The relative CAT expression values were determined by CAT-ELISA. RESULTS: TGF-beta 1 bly induced the CAT expression level, however, bFGF not only inhibited the basal CAT expression but also reduced the CAT expression up-regulated by TGF-beta 1 in normal skin and hypertrophic scar fibroblasts (P lt; 0.05). CONCLUSION: bFGF can reduce the promoter activities of human alpha 1(I) procollagen gene and antagonize the role of TGF-beta 1 in up-regulating the promoter activities of human alpha 1(I) procollagen gene in normal skin and hyertrophic scar fibroblasts.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • CHARACTERISTICS OF bFGF AND TGF-β EXPRESSION IN DERMAL CHRONIC ULCERS AND HYPERTROPHIC SCARS AND THEIR EFFECTS ON TISSUE REPAIR

    OBJECTIVE: To localize the distribution of basic fibroblast growth factor (bFGF) and transforming growth factor-beta(TGF-beta) in tissues from dermal chronic ulcer and hypertrophic scar and to explore their effects on tissue repair. METHODS: Twenty-one cases were detected to localize the distribution of bFGF and TGF-beta, among them, there were 8 cases with dermal chronic ulcers, 8 cases with hypertrophic scars, and 5 cases of normal skin. RESULTS: Positive signal of bFGF and TGF-beta could be found in normal skin, mainly in the keratinocytes. In dermal chronic ulcers, positive signal of bFGF and TGF-beta could be found in granulation tissues. bFGF was localized mainly in fibroblasts cells and endothelial cells and TGF-beta mainly in inflammatory cells. In hypertrophic scar, the localization and signal density of bFGF was similar with those in granulation tissues, but the staining of TGF-beta was negative. CONCLUSION: The different distribution of bFGF and TGF-beta in dermal chronic ulcer and hypertrophic scar may be the reason of different results of tissue repair. The pathogenesis of wound healing delay in a condition of high concentration of growth factors may come from the binding disorder of growth factors and their receptors. bFGF may be involved in all process of formation of hypertrophic scar, but TGF-beta may only play roles in the early stage.

    Release date:2016-09-01 10:27 Export PDF Favorites Scan
  • INDUCTION OF TRANSFORMING GROWTH FACTOR-β1 AND DENTIN NON-COLLAGENPROTEINS ON TISSUE ENGINEERING PULP

    Objective To study the influence of transforming growth factor-β1(TGF-β1), dentin non-collagen proteins(dNCPs) and their complexon tissue engineering pulp system. Methods Collagen I and dentin powder were used to construct the system of pulp cells in 3dimensional culture, dentin powder was added in the gel. The tissue engineering pulp were divided TGF-β1 group, dNCPs group, TGF-β1/dNCPsgroup and control group.After3, 6 and 14 days, the appearance and the differentiation of pulp cells were observed by HE staining and immunohistochemical staining -respectively. Results Collagen I could form netted collagen gel construction. Growing condition of pulp cells in gel was similar to that of pulp cells in vivo. After the TGF-β1 and dNCPswere added, the pulp cells had some characteristics of odontoblasts and had unilateral cell process after culture 6 days. Pulp cells arranged with parallel columnar and form dentin-pulp-like complex after 14 days. Immunohistochemical staining showed dentin salivary protein(DSP) began to express in some cells.The number of positive cell was most in the TGF-β1 group. No positive cells were detected in the control group. Conclusion The transforming growth factor-β1 and noncollagen proteins can stimulate the pulp cells to transform into odontoblasts to some extent, which promote the formation of tissue engineering pulp.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • OVEREXPRESSION OF TRUNCATED TYPE Ⅱ TRANSFORMING GROWTH FACTOR-β RECEPTOR IN DERMAL FIBROBLASTS

    OBJECTIVE: To study the effect of overexpression of truncated type II TGF-beta receptor on transforming growth factor-beta 1(TGF-beta 1) autoproduction in normal dermal fibroblasts. METHODS: In vitro cultured dermal fibroblasts were treated with recombinant human TGF-beta 1(rhTGF-beta 1) (5 ng/ml) or recombinant adenovirus containing truncated type II TGF-beta receptor gene (50 pfu/cell). Their effects on regulating gene expression of TGF-beta 1 were observed with Northern blotting. RESULTS: rhTGF-beta 1 up-regulated the gene expression of TGF-beta 1 and type I procollagen. Overexpression of truncated receptor II down-regulated the gene expression of TGF-beta 1. CONCLUSION: Overexpression of the truncated TGF-beta receptor II decreases TGF-beta 1 autoproduction via blocking TGF-beta receptor signal. The results may provided a new strategy for scar gene therapy.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • EFFECTS OF BONE MORPHOGENETIC PROTEIN AND TRANSFORMING GROWTH FRACTOR-β ON BIOMECHANICAL PROPERTY FOR FRACTURE HEALING IN RABBIT ULNA

    Objective To investigate the effects of exogenous bone morphogenetic protein(BMP) and transforming growth factor-β(TGF-β) on biomechanical property for ulna of fracture healing.Methods Thirty-six adult rabbits were made the model of right ulnar fracture and treated locally with TGF-β/PLA, BMP/PLA,TGF-β+BMP/PLA or PLA(as control group). Fracture healing was evaluated by measurement of the mechanical parameters and geometric parameters.Results As compared with control group, the geometric parameters, the bending broken load, the ultimatebending strength, the bending elastic modulus, the ultimate flexural strength, the flexural elastic modulus, the ultimate compressing strength, the compressingelastic modulus, and the ultimate tensile strength for ulna of fracture healingincreased significantly in the treatment groups(P<0.01). These parameters were higher in TGF-β+BMP/PLA group than in TGF-β/PLA group or in BMP/PLA group andin TGF-β/PLA group than in BMP/PLA group(P<0.05). There was no significant difference in bone density between the treatment groups and control group. Conclusion Local application of exogenous TGF-β and BMP canincrease the callus formation and enhance biomechanical strength of bone after fracture healing. A combination of TGF-β and BMP has synergetic effect in enhancing fracture healing.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Effect of bone marrow mesenchymal stem cells via portal vein injection on transforming growth factor-βR1 and -βR2 in rats with acute liver failure

    Objective To investigate effect of bone marrow mesenchymal stem cells (BMSCs) via portal vein injection on transforming growth factor-β receptor 1 (TGF-βR1) and TGF-βR2 in rats with acute liver failure (ALF). Methods Sixty male SD rats were randomly divided into a normal control group, ALF model group, and BMSCs treatment group, with 20 rats in each group. The rats of normal control group were directly sacrificed without other treatment. The ALF models were made in the rats of BMSCs treatment group and ALF model group, then were treated with BMSCs and equal volume of normal saline respectively. On day 7 after treatment, the 1-week survival situation of rats was observed, the pathological change was observed by HE staining, the apoptosis of liver cells was detected by TUNEL method, and the TGF-βR1 and TGF-βR2 proteins expressions were detected by Western blot method. Results ① The 1-week survival rate of the BMSCs treatment group was significantly higher than that of the ALF model group (P<0.05). ② In the ALF model group, the liver cells were diffuse necrosis, the lobular structure was indistinct, and a large number of bridging necrosis. In the BMSCs treatment group, the infiltrations of inflammatory cells were decreased, and the structure of hepatic lobules gradually recovered, and the normal hepatocytes were seen around it. ③ The apoptosis indexes of the BMSCs treatment group and the ALF model group were significantly higher than those in the normal control group (P<0.05), which in the BMSCs treatment group was significantly lower than that of the ALF model group (P<0.05). ④ The TGF-βR1 and TGF-βR2 proteins expressions in the liver tissues of the ALF model group were significantly higher than those of the normal control group (P<0.05), which of the BMSCs treatment group were significantly lower than those of the ALF model group (P<0.05). Conclusion BMSCs could inhibit apoptosis of hepatocytes in ALF. Its mechanism might be related to expressions of TGF-βR1 and TGF-βR1 proteins, but its specific regulatory pathway needs to be further studied.

    Release date:2017-08-11 04:10 Export PDF Favorites Scan
  • TGF-β 1 GENE EXPRESSION IN THE HEALING PROCESS OF SKIN WOUND IN RAT

    For observation of the change of transforming growth factor-beta 1 (TGF-beta 1) gene expression in the process of skin wound healing, the following experiments were performed. Sixteen Wistar rats were chosen. At each side of the rat’s back, a 1 cm x 1.5 cm middle-thick skin wound was made. After 3, 6, 9 and 12 days, the specimens were taken from the wounds. For each specimen, half of it was used for RNA extraction, and underwent dot blotting; and the other half was frozen immediately and underwent in situ hybridization. The probes were dig-labeled PDGF-BB cDNA probe and TGF-beta 1 probe. The results showed that TGF-beta 1 gene was expressed mainly in fibroblast, epithelial cell and capillary endothelial cell. The peak of TGF-beta 1 mRNA content was in the 6th day postoperatively. After that, the content of TGF-beta 1 decreased to normal. It was suggested that TGF-beta 1 gene expression was in close relation with healing process. TGF-beta 1 may play an important regulatory role in the skin wound healing.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • CHARACTERISTICS AND EFFECT OF THREE TRANSFORMING GROWTH FACTOR -β ISOFORMS AND THEIR RECEPTOR(I) ON SCAR FORMATION

    Objective To observe the differences in protein contents of three transforming growth factorbeta(TGF-β) isoforms, β1, β2, β3 andtheir receptor(I) in hypertrophic scar and normal skin and to explore their influence on scar formation. Methods Eight cases of hypertrophic scar and their corresponding normal skin were detected to compare the expression and distribution of TGF-β1, β2, β3 and receptor(I) with immunohistochemistry and common pathological methods. Results Positive signals of TGF-β1, β2, and β3 could all be deteted in normal skin, mainly in the cytoplasm and extracellular matrix of epidermal cells; in addition, those factors could also be found in interfollicular keratinocytes and sweat gland cells; and the positive particles of TGF-β R(I) were mostly located in the membrane of keratinocytes and some fibroblasts. In hypertrophic scar, TGF-β1 and β3 could be detected in epidermal basal cells; TGFβ2 chiefly distributed in epidermal cells and some fibroblast cells; the protein contents of TGF-β1 and β3 were significantly lower than that of normal skin, while the change of TGF-β2 content was undistinguished when compared withnormalskin. In two kinds of tissues, the distribution and the content of TGF-β R(I) hadno obviously difference. ConclusionThe different expression and distribution of TGF-β1, β2 andβ3 between hypertrophic scar and normal skin may beassociated with the mechanism controlling scar formation, in which the role of the TGF-βR (I) and downstream signal factors need to be further studied.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content