Objective To study the method and effect of free rectusabdominis muscle flaps with intermediate split thickness skin graft in repairing defects on legs and ankles.Methods From May 1998 to December 2002, 11 cases of defects on legs(2 cases) and on ankles( 9 cases) were repaired by use of unilateral free rectus abdominis flap with skin graft. The soft tissue defects were accompanied by osteomyelitis or the exposure of bone or tendon.The disease course was 1 month to 10 years. The defect size ranged 3 cm×4 cm to 8 cm×14 cm. The area ofrectus abdominis muscle flaps was 4 cm×6 cm to 8 cm×15 cm. Results All patients were followed up 6 months to 4 years after operation. All rectusabdominis flaps survived with good appearances and functions.The primary healing was achieved in 8 cases, intermediate split thickness skin graft necrosed in 3 cases and the wound healed after skin re-graft.Conclusion Free rectus abdominis flap is a proper option for repair of the soft tissue defects or irregular woundson legs and ankles. It has the advantages of abundant blood supply, b anti-infection ability, good compliance and satisfied appearance.
Objective To investigate the effectiveness of the lower abdominal conjoined flap with bilateral superficial inferior epigastric arteries (SIEA) for repairing the large soft tissue defects on the foot and ankle. Methods The clinical data of 18 patients with large soft tissue defects on foot and ankle treated between October 2017 and January 2020 were retrospectively analyzed, including 12 males and 6 females; the age ranged from 25 to 62 years, with a median age of 35 years. The causes of injury included machine injury in 9 cases, traffic accident injury in 5 cases, cutting injury in 2 cases, and electric injury in 2 cases. All wounds were accompanied by exposure of blood vessels, tendons, bones, and joints. Wound located at ankle in 8 cases, dorsum of foot in 6 cases, and sole in 4 cases. In the emergency department, complete debridement (the defect area after debridement was 15 cm×10 cm to 25 cm×16 cm) and vacuum sealing drainage on the wound was performed. The time from debridement to flap repair was 3-10 days, with an average of 5 days. According to the defect location and scope, the lower abdominal conjoined flap with bilateral SIEA was prepared. The size of the flap ranged from 15 cm×10 cm to 25 cm×16 cm. The length of vascular pedicle was 4.5-7.5 cm, with an average of 6.0 cm; the thickness of the flap was 0.5-1.2 cm, with an average of 0.8 cm. The abdominal donor site was closed in one-stage. Results One flap was altered as the conjoined flap with the bilateral superficial circumflex iliac artery because of the absence of the SIEA in one side. Except for 1 case of skin flap with distal necrosis, the flap healed after two-stage skin grafting repair; the rest skin flaps survived, and the wounds of the donor and recipient sites all healed by first intention. All patients were followed up 12-28 months, with an average of 16 months. The skin flap had a satisfactory appearance and soft texture, without abnormal hair growth or obvious pigmentation. Only linear scars were left at the donor site, and no complication such as abdominal hernia occurred. The foot and ankle function was satisfactory. At last follow-up, the American Orthopaedic Foot and Ankle Society (AOFAS) scores were rated as excellent in 16 cases and good in 2 cases. Conclusion The lower abdominal conjoined flap with bilateral SIEA is an ideal flap for repairing large defects of foot and ankle with less morbidity scarcely, which ascribed to its ease of dissection, adjustable thinness, and concealed donor site, as well as the flexible perforator match.
The technical deficiencies in traditional medical imagining methods limit the study of in vivo ankle biomechanics. A dual fluoroscopic imaging system (DFIS) provides accurate and non-invasive measurements of dynamic and static activities in joints of the body. This approach can be used to quantify the movement in the single bones of the ankle and analyse different morphological and complex bone positions and movement patterns within these organs and has been widely used in the field of image diagnosis and evaluation of clinical biomechanics. This paper reviews the applications of DFIS that were used to measure the in vivo kinematics of the ankle in the field of clinical and sports medicine. The advantages and shortcomings of DFIS in the practical application are summarised. We further put forward effective research programs for understanding the movement as well as injury mechanism of the ankle in vivo, and provide constructive research direction for future study.
Objective To investigate the management strategies of external fixation combined with microsurgical techniques for repairing complex foot and ankle wounds in children. MethodsThe clinical data of 9 children with complex foot and ankle wounds who met the selection criteria between June 2017 and December 2021 was retrospectively analyzed. There were 6 boys and 3 girls, aged 3-13 years, with an average of 7.4 years. The causes of injury included crush injury in 5 cases and traffic accident injury in 4 cases. The wound size ranged from 6 cm×5 cm to 25 cm×18 cm. The time from injury to surgery ranged from 3 to 8 hours, with an average of 5 hours. All cases underwent staged surgical treatment. Among the 3 cases requiring deformity correction, 2 cases initially underwent free anterolateral thigh flap transplantation for wound coverage and limb salvage, followed by circular external fixation combined with osteotomy to address postoperative limb deformity, while 1 case received osteotomy for tibial fracture realignment prior to local pedicled flap reconstruction. All the 6 cases with non-deformity correction underwent initial external fixation followed by secondary flap reconstruction for wound management. The American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score was used to evaluate the foot and ankle function of children. Results All children successfully achieved limb salvage postoperatively. Among the 6 non-deformity correction cases, all flaps survived with satisfactory wound healing and no infection was observed; fractures healed within 2.5-4.5 months, after which external fixators were removed for functional rehabilitation with favorable recovery. One case treated with circular external fixation combined with osteotomy achieved bone union at 4 months postoperatively, followed by fixator removal. One case undergoing osteotomy for tibial fracture realignment showed bone healing at 2.5 months post-correction, with subsequent fixator removal. One patient receiving bone lengthening developed infection at 1 week postoperatively, which was managed with multiple debridements, ultimately achieving bone union at 16 months postoperatively and followed by fixator removal. At last follow-up, all patients demonstrated satisfactory ankle-hindfoot functional recovery, with AOFAS ankle-hindfoot scores ranging from 80 to 90 (mean, 84.2). Conclusion The combination of external fixation and microsurgical techniques demonstrates significant advantages in reconstructing complex foot and ankle wounds in children. The synergistic interaction provides both mechanical stability and biological repair, enabling early functional rehabilitation while reducing infection risks.
ObjectiveTo study the effectiveness of tibial transverse transport combined with the antibiotics embedded bone cement in the treatment of chronic infection of foot and ankle with lower extremity ischemic diseases.MethodsA retrospective analysis was performed on 28 patients with ischemic diseases of lower extremities associated with chronic foot and ankle infection who were treated with tibial transverse transport combined with antibiotic bone cement between August 2015 and October 2019. There were 22 males and 6 females, with an average age of 65.6 years (range, 41-86 years). There were 25 cases of diabetic foot, 2 cases of arteriosclerosis obliterans, and 1 case of thromboangiitis obliterans. The course of infection ranged from 1 to 27 years, with an average of 14.9 years. The healing condition and time of foot and ankle in all patients were recorded and compared, and the Wagner grading and WIFi (W: lower extremity wound classification; I: ischemic classification; Fi: foot infection classification) grading were compared before and at last follow-up.ResultsThe wound surface of 1 diabetic foot patient improved at 111 days after operation, without purulent secretion, and lost follow-up. The remaining 27 cases were followed up 5 to 21 months (mean, 8.4 months). There was no necrosis in the tibial osteotomy incision and the local flap. After operation, 21 cases showed needle reaction of external fixator, but the needle infection gradually improved after the corresponding treatment. Among the 24 patients with diabetic foot, 1 died of multiple organ failure due to pulmonary infection. Acute lower extremity vascular embolism occurred in 1 case, and the foot was amputated due to acute gangrene. In the remaining 22 cases, the wound healing time of foot and ankle was 2.5-11.0 months (mean, 4.6 months). At last follow-up, Wagner grading and WIFi grading of the patients were significantly improved when compared with those before operation (P<0.05). One patient with thromboangiitis obliterans had foot and ankle healing at 6 months after operation. Two patients with lower extremity arteriosclerosis obliterans had foot and ankle healing at 16 and 18 months after operation, respectively.ConclusionTibial transverse transport combined with the antibiotics embedded bone cement is effective in treating chronic infection of foot and ankle with lower extremity ischemic diseases.
Objective To investigate the effectiveness of perforator propeller flap of lower limb in the treatment of foot and ankle defect in children. Methods The clinical data of 28 children with foot and ankle defect treated with perforator propeller flap of lower limb between January 2018 and January 2021 were retrospectively analyzed. There were 18 boys and 10 girls with an average age of 7.3 years (range, 6-14 years). There were 8 cases of traffic accident injury and 20 cases of chronic infection wound. The disease duration was 2-4 months, with an average of 2.8 months. After thorough debridement, the residual wound size ranged from 5 cm×4 cm to 9 cm×5 cm. Repairing was performed after 7-28 days of the infection in control. According to the location, size, and shape of the wound, the perforating vessels were located by ultrasonic Doppler, and the perforator propeller flap (area ranged from 6 cm×5 cm to 11 cm×6 cm) was designed and harvested to repair the wound. Flap transfer combined with free split-thickness skin graft covered the wound in 2 cases. The donor site was sutured directly (22 cases) or repaired with skin graft (6 cases). Results Twenty-six flaps survived, of which 20 cases were in primary healing, and 6 cases had epidermal necrosis at the end of small paddle, which healed after dressing change. Necrosis occurred in 2 cases due to venous crisis which healed after anterolateral femoral flap free transplantation. Primary wound healing was achieved in donor site. All 28 children were followed up 6-24 months (mean, 10.5 months). The texture, shape, and motor function of the lower limb was satisfactory. At last follow-up, the American Orthopaedic Foot and Ankle Association (AOFAS) score was 89.8±8.0, which was significantly different from the preoperative score (79.6±10.4) (t=−11.205, P<0.001); 20 cases were excellent, 6 cases were good, and 2 cases were poor, and the excellent and good rate was 92.8%. ConclusionThe perforator propeller flap of lower limb in children has its own characteristics. It is a reliable method to repair the foot and ankle defect in children.
The article focuses on the recent progress in foot and ankle surgery, including the diagnosis of disease, treatment protocols, outcomes, and evaluation tools as well as other innovations. New and accurate diagnostic modalities and measurements have undergone a breakthrough. Diagnostic modalities tend to be simpler and less expensive. Measurement tools also change to simpler and more accurate. The accuracy and efficacy of surgery and the minimally invasive method have become more popular and important. New treatments and basic research have also made breakthroughs.
Objective To summarize the progress of clinical diagnosis and treatment of diabetic Charcot neuroarthropathy (CNO) of foot and ankle to provide reference for clinical treatment. Methods The research literature on diabetic CNO of foot and ankle at home and abroad was widely reviewed, and the stages and classification criteria of CNO were summarized, and the treatment methods at different stages of the disease course were summarized. Results CNO is a rapidly destructive disease of bone and joint caused by peripheral neuropathy, which leads to the formation of local deformities and stress ulcers due to bone and joint destruction and protective sensory loss, which eventually leads to disability and even life-threatening. At present, the modified Eichenholtz stage is a commonly used staging criteria for CNO of foot and ankle, which is divided into 4 stages by clinical and imaging manifestations. The classification mainly adopts the modified Brodsky classification, which is divided into 6 types according to the anatomical structure. The treatment of diabetic CNO of foot and ankle needs to be considered in combination with disease stage, blood glucose, comorbidities, local soft tissue conditions, degree of bone and joint destruction, and whether ulcers and infections are present. Conservative treatment is mainly used in the active phase and surgery in the stable phase. Conclusion The formulation of individualized and stepped treatment regimens can help improve the effectiveness of diabetic CNO of foot and ankle. However, there is still a lack of definitive clinical evidence to guide the treatment of active and stable phases, and further research is needed.