ObjectiveTo investigate the effectiveness of abdominal free flap carrying bilateral superficial circumflex iliac arteries for repairing large skin and soft tissue defects of foot and ankle.MethodsBetween June 2016 and June 2019, 15 patients with large skin and soft tissue defects of foot and ankle were admitted, including 10 males and 5 females with an average age of 30 years (range, 10-60 years). The causes of injury included 6 cases of traffic accident, 3 cases of machine strangulation, 3 cases of heavy object injury, 2 cases of fall, and 1 case of electric shock. The time from injury to admission was 3 hours to 10 days, with an average of 2 days. The wound located at dorsal foot in 5 cases, ankle in 6 cases, dorsal foot and ankle in 3 cases, and dorsal foot and sole in 1 case. All wounds were contaminated to varying degrees and accompanied by tendon and bone exposure, including 5 cases of extensive necrosis of the dorsal skin with infection. The area of defects ranged from 18 cm×6 cm to 25 cm×8 cm. There were 9 cases of foot and ankle fractures and dislocations, and 2 cases of foot and ankle bone defects. The wound was repaired with abdominal free flap carrying bilateral superficial circumflex iliac arteries. The area of the flaps ranged from 20 cm×8 cm to 27 cm×10 cm; the skin flaps were thinned under the microscope to make the thickness of 0.5-1.0 cm, with an average of 0.7 cm. All incisions at the donor site were sutured directly.ResultsDuring the operation, 1 case was replaced with an abdominal free flap carrying the superficial abdominal artery because the superficial iliac circumflex artery was thin and the superficial abdominal artery was thicker. The skin flaps of 15 cases survived smoothly, and the wounds healed by first intention; the donor incisions all healed by first intention. All patients were followed up 8-36 months, with an average of 15 months. The flap shape was satisfactory, with good texture and mild pigmentation of the flap edge, without obvious bloating, effect on shoe wear, or secondary surgical thinning of the flap. The linear scar left in the donor site and had no effect on hip joint movement. All fractures healed well, and the healing time ranged from 3 to 8 months, with an average of 6 months.ConclusionThe abdominal free flap carrying bilateral superficial iliac circumflex arteries has concealed donor site, with little damage, and can be sutured in one stage. The blood vessel is anatomically constant, with less variation, and reliable blood supply. It is one of the ideal flaps for repairing large skin and soft tissue defects of foot and ankle.
Objective To investigate the management strategies of external fixation combined with microsurgical techniques for repairing complex foot and ankle wounds in children. MethodsThe clinical data of 9 children with complex foot and ankle wounds who met the selection criteria between June 2017 and December 2021 was retrospectively analyzed. There were 6 boys and 3 girls, aged 3-13 years, with an average of 7.4 years. The causes of injury included crush injury in 5 cases and traffic accident injury in 4 cases. The wound size ranged from 6 cm×5 cm to 25 cm×18 cm. The time from injury to surgery ranged from 3 to 8 hours, with an average of 5 hours. All cases underwent staged surgical treatment. Among the 3 cases requiring deformity correction, 2 cases initially underwent free anterolateral thigh flap transplantation for wound coverage and limb salvage, followed by circular external fixation combined with osteotomy to address postoperative limb deformity, while 1 case received osteotomy for tibial fracture realignment prior to local pedicled flap reconstruction. All the 6 cases with non-deformity correction underwent initial external fixation followed by secondary flap reconstruction for wound management. The American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score was used to evaluate the foot and ankle function of children. Results All children successfully achieved limb salvage postoperatively. Among the 6 non-deformity correction cases, all flaps survived with satisfactory wound healing and no infection was observed; fractures healed within 2.5-4.5 months, after which external fixators were removed for functional rehabilitation with favorable recovery. One case treated with circular external fixation combined with osteotomy achieved bone union at 4 months postoperatively, followed by fixator removal. One case undergoing osteotomy for tibial fracture realignment showed bone healing at 2.5 months post-correction, with subsequent fixator removal. One patient receiving bone lengthening developed infection at 1 week postoperatively, which was managed with multiple debridements, ultimately achieving bone union at 16 months postoperatively and followed by fixator removal. At last follow-up, all patients demonstrated satisfactory ankle-hindfoot functional recovery, with AOFAS ankle-hindfoot scores ranging from 80 to 90 (mean, 84.2). Conclusion The combination of external fixation and microsurgical techniques demonstrates significant advantages in reconstructing complex foot and ankle wounds in children. The synergistic interaction provides both mechanical stability and biological repair, enabling early functional rehabilitation while reducing infection risks.
ObjectiveTo investigate the effectiveness of free transverse gracilis myocutaneous flap for soft tissue defects of foot and ankle. Methods Between January 2017 and December 2020, 16 cases (17 feet) of soft tissue defects of foot and ankle were repaired with free transverse gracilis myocutaneous flaps. There were 10 males and 6 females, with an average age of 38 years (range, 23-60 years). There were 9 cases of left foot, 6 cases of right foot, and 1 case of bilateral feet. The causes of soft tissue defect were traffic accident injury in 3 cases, heavy object smash injury in 4 cases, machine injury in 3 cases, infection in 4 cases, electrical burn in 1 case, and synovial sarcoma after operation in 1 case. The wounds located at the distal plantar in 2 cases (2 feet), the heel and ankle in 6 cases (6 feet), the dorsum of the foot in 7 cases (8 feet), and the first metatarsophalangeal joint to the medial malleolus in 1 case (1 foot). The size of wounds ranged from 6 cm×5 cm to 18 cm×7 cm. The size of flap ranged from 11 cm×6 cm to 21 cm×9 cm. The donor site was sutured directly. Results After operation, 1 case (1 foot) of flap vascular crisis, 1 case (1 foot) of partial necrosis of the flap, and 1 case of partial dehiscence of the incision at donor site occurred, all of which healed after symptomatic treatment. The other flaps survived, and the incisions at donor and recipient sites healed by first intention. All patients were followed up 12-36 months (mean, 24 months). Except for 1 case (1 foot) of swollen flap, which underwent two-stage trimming, the other flaps had good shape and texture. All the flaps had a protective feeling. At last follow-up, Kofoed scores of foot and ankle function ranged from 73 to 98 (mean, 89.7); 13 cases were excellent, 2 cases were good, and 1 case was poor, with an excellent and good rate of 93.8%. Linear scar was formed at the donor site without adverse effect on lower limb function. ConclusionThe free transverse gracilis myocutaneous flap is an effective flap for repairing large soft tissue defects of foot and ankle due to its advantages of large excisable area, less variation of vascular anatomy, and concealment of donor site.
Objective To report the clinical result of the improvedisland skin flap with distallybased sural nerve nutrient vessels in repairing skin defect in the heel, ankle or foot. Methods From August2004 to April 2005, 15 patients with skin defect in the heel, ankle or foot at distal part were treated by the improved island skin flap with distally-based of sural nerve nutrient vessels. Of 15 flaps, 12 were simplex flaps and 3 were complex flaps. These flap area ranged from 7 cm×6 cm to 11×8 cm. The donor sites were sutured directly and covered with free flap. Results All flaps survived without flap swelling and disturbance of blood circulation. The wounds of donor and recipient sites healed by first intention. The followup period ranged from 3 to 6 months. The texture of flap was soft and the color of flap was similar to that of normal skin. The foot function was excellent. Conclusion The improved island skin flap with distally-based sural nerve nutrient vessels is an ideal skin flap for repairing skin defect in the heel, ankle or foot distal part in clinical. The operation is simple and need not to anastomose blood vessel.
ObjectiveTo study the effectiveness of tibial transverse transport combined with the antibiotics embedded bone cement in the treatment of chronic infection of foot and ankle with lower extremity ischemic diseases.MethodsA retrospective analysis was performed on 28 patients with ischemic diseases of lower extremities associated with chronic foot and ankle infection who were treated with tibial transverse transport combined with antibiotic bone cement between August 2015 and October 2019. There were 22 males and 6 females, with an average age of 65.6 years (range, 41-86 years). There were 25 cases of diabetic foot, 2 cases of arteriosclerosis obliterans, and 1 case of thromboangiitis obliterans. The course of infection ranged from 1 to 27 years, with an average of 14.9 years. The healing condition and time of foot and ankle in all patients were recorded and compared, and the Wagner grading and WIFi (W: lower extremity wound classification; I: ischemic classification; Fi: foot infection classification) grading were compared before and at last follow-up.ResultsThe wound surface of 1 diabetic foot patient improved at 111 days after operation, without purulent secretion, and lost follow-up. The remaining 27 cases were followed up 5 to 21 months (mean, 8.4 months). There was no necrosis in the tibial osteotomy incision and the local flap. After operation, 21 cases showed needle reaction of external fixator, but the needle infection gradually improved after the corresponding treatment. Among the 24 patients with diabetic foot, 1 died of multiple organ failure due to pulmonary infection. Acute lower extremity vascular embolism occurred in 1 case, and the foot was amputated due to acute gangrene. In the remaining 22 cases, the wound healing time of foot and ankle was 2.5-11.0 months (mean, 4.6 months). At last follow-up, Wagner grading and WIFi grading of the patients were significantly improved when compared with those before operation (P<0.05). One patient with thromboangiitis obliterans had foot and ankle healing at 6 months after operation. Two patients with lower extremity arteriosclerosis obliterans had foot and ankle healing at 16 and 18 months after operation, respectively.ConclusionTibial transverse transport combined with the antibiotics embedded bone cement is effective in treating chronic infection of foot and ankle with lower extremity ischemic diseases.
Objective To investigate the effectiveness of perforator propeller flap of lower limb in the treatment of foot and ankle defect in children. Methods The clinical data of 28 children with foot and ankle defect treated with perforator propeller flap of lower limb between January 2018 and January 2021 were retrospectively analyzed. There were 18 boys and 10 girls with an average age of 7.3 years (range, 6-14 years). There were 8 cases of traffic accident injury and 20 cases of chronic infection wound. The disease duration was 2-4 months, with an average of 2.8 months. After thorough debridement, the residual wound size ranged from 5 cm×4 cm to 9 cm×5 cm. Repairing was performed after 7-28 days of the infection in control. According to the location, size, and shape of the wound, the perforating vessels were located by ultrasonic Doppler, and the perforator propeller flap (area ranged from 6 cm×5 cm to 11 cm×6 cm) was designed and harvested to repair the wound. Flap transfer combined with free split-thickness skin graft covered the wound in 2 cases. The donor site was sutured directly (22 cases) or repaired with skin graft (6 cases). Results Twenty-six flaps survived, of which 20 cases were in primary healing, and 6 cases had epidermal necrosis at the end of small paddle, which healed after dressing change. Necrosis occurred in 2 cases due to venous crisis which healed after anterolateral femoral flap free transplantation. Primary wound healing was achieved in donor site. All 28 children were followed up 6-24 months (mean, 10.5 months). The texture, shape, and motor function of the lower limb was satisfactory. At last follow-up, the American Orthopaedic Foot and Ankle Association (AOFAS) score was 89.8±8.0, which was significantly different from the preoperative score (79.6±10.4) (t=−11.205, P<0.001); 20 cases were excellent, 6 cases were good, and 2 cases were poor, and the excellent and good rate was 92.8%. ConclusionThe perforator propeller flap of lower limb in children has its own characteristics. It is a reliable method to repair the foot and ankle defect in children.
Objective To summarize the progress of clinical diagnosis and treatment of diabetic Charcot neuroarthropathy (CNO) of foot and ankle to provide reference for clinical treatment. Methods The research literature on diabetic CNO of foot and ankle at home and abroad was widely reviewed, and the stages and classification criteria of CNO were summarized, and the treatment methods at different stages of the disease course were summarized. Results CNO is a rapidly destructive disease of bone and joint caused by peripheral neuropathy, which leads to the formation of local deformities and stress ulcers due to bone and joint destruction and protective sensory loss, which eventually leads to disability and even life-threatening. At present, the modified Eichenholtz stage is a commonly used staging criteria for CNO of foot and ankle, which is divided into 4 stages by clinical and imaging manifestations. The classification mainly adopts the modified Brodsky classification, which is divided into 6 types according to the anatomical structure. The treatment of diabetic CNO of foot and ankle needs to be considered in combination with disease stage, blood glucose, comorbidities, local soft tissue conditions, degree of bone and joint destruction, and whether ulcers and infections are present. Conservative treatment is mainly used in the active phase and surgery in the stable phase. Conclusion The formulation of individualized and stepped treatment regimens can help improve the effectiveness of diabetic CNO of foot and ankle. However, there is still a lack of definitive clinical evidence to guide the treatment of active and stable phases, and further research is needed.
ObjectiveTo investigate the feasibility and effectiveness of free popliteal artery cutaneous branch flap anastomosed with lateral tarsal artery and vein for the repair of wound on the foot and ankle by anatomical observation and clinical application. MethodsLatex was poured into the blood vessels of 8 cadavers, then perforator vessel of posterolateral upper calf was dissected, and the popliteal artery cutaneous branch flap was designed with a pedicle of 2.5 cm in length; the lateral tarsal artery of the foot was dissected, could be freed to 6 cm in length; the diameter of these vessels was measured, and the number of the accompanying veins was counted. Between March 2010 and January 2013, 13 cases of foot and ankle wounds were repaired with popliteal artery cutaneous branch flap anastomosed with lateral tarsal artery and vein. The size of flaps ranged from 6.0 cm×4.0 cm to 7.5 cm×5.5 cm. There were 11 males and 2 females, aged from 41 to 65 years (mean, 47.3 years). The causes of injury included traffic accident in 8 cases, crushing in 4 cases, and twist by machine in 1 case. The size of wounds, ranged from 5.0 cm×3.5 cm to 7.0 cm×5.0 cm. The donor sites were sutured directly. ResultsAccording to anatomical observation, the popliteal artery cutaneous branch flap was designed by using the lateral popliteal artery perforator for shaft. The vessel of the pedicle perforator flaps from the popliteal artery cutaneous branch flap matched well with the lateral tarsal artery. Clinical results: vascular crisis occurred in 2 flaps, which survived after symptomatic treatment; the other flaps survived, with primary healing of wound and incision at donor site. The patients were all followed up 5-18 months (mean, 11 months). The flap had normal color and good elasticity. Second stage operation was performed to make the flap thinner in 3 female patients because of bulky flaps. The remaining patients had no obvious fat flap. According to American Orthopaedic Foot and Ankle Society (AOFAS) score for evaluation of the ankle function at 6 months after operation, the results were excellent in 7 cases, good in 5 cases, and fair in 1 case, with an excellent and good rate of 92.3%. ConclusionFree popliteal artery cutaneous branch flap anastomosed with lateral tarsal artery and vein for the repair of wound on the foot and ankle is simple and effective. The donor site is hidden.