Purpose To investigate the influence of ametropia on stereopsis and its mechanism by using the disparity evoked potential testing. Methods A new set of static random dot stereograms was utilized as a stimulation to elicit the disparity evoked potentials in 21 ametropes and 40 stereo normal subjects. Rezults The P250 wave,which was related to stereoscopic stimulation in ametropes,was recorded in both the ametropes and emetropic stereo normal persons in this series,and the characteristic changes of P250 wave with increasing visual disparity in ametropes were similar to those in normal subjects.The differences of mean amplitudes and latencies of P250 waves between myopes and hyperopes were not significant. Conclusion Ametropia in full correction dose not significanly affect the function of stereopsis. (Chin J Ocul Fundus Dis,1998,14:225-227)
Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.
Objective To investigate the relationship between graded spinal cord ischemia/reperfusion injury and somatosensory evoked potentials(SEP),neurologic function score(NFS)and the histopathological changes of spinal cord. Methods Forty rabbits were randomized and equally divided into 4 groups: shamoperation group, ischemia for 30min, 45min and 60min groups. The spinal cord ischemiareperfusion injury model was created by occlusion of the abdominal aorta in rabbits. SEP was monitored before ischemia,5,10minutes after ischemia, 15, 30 minutes, 1,2, 24 and 48 hours after reperfusion. NFS was evaluated at 6,12,24 and 48 hours after reperfusion.The pathological changes of spinal cord were observed after reperfusion 48 hours. Results The pathological characters with mild,moderate and severe spinal cord ischemia/reperfusion injury could be simulated by declamping after 30, 45 and 60 minutes infrarenal aorta crossclamping. SEP amplitude returned to normal after reperfusion 15 minutes(Pgt;0.05)and SEP latency returned to normal after reperfusion 30 minutes(Pgt;0.05)during mild spinal cord ischemia/reperfusion injury.SEP amplitude returned to normal after reperfusion 30 minutes(Pgt;0.05)and SEP latency returned to normal after reperfusion 60 minutes(Pgt;0.05)during moderate spinal cord ischemia/reperfusion injury. SEP latency increased and SEP amplitude decreased during severe spinal cord ischemia/reperfusion injury,compared with other groups, there were significant differences in SEP latency and SEP amplitude by clamping the infrarenal aorta for 60min(Plt;0.01). With graded spinal cord ischemia/reperfusion injury, compared with shamoperation group, spinal cord ischemiareperfusion groups had significant differences in NFS(Plt;0.01). Conclusion SEP is much quicker in the recovery of amplitude than latency during spinal cord ischemia/reperfusion. SEP is a sensitive and accurate index for spinal cord function during ischemia/reperfusion injury. SEP monitoring spinal cord ischemia/reperfusion injury during operation provides experimental basis for clinical application.
ObjectiveTo investigate the influence and management of blood pressure on intraoperative cortex somatosensory evoked potential (CSEP) in the surgery of severe scoliosis. MethodsFrom June 2009 to March 2012, CSEP monitoring during surgery of severe scoliosis were performed on 43 patients, in whom 4 had abnormal CSEP while blood pressure decline. There were 2 males and 21 females. The average age was 16.1 years. The average preoperative Cobb angle was 96.1° (88.7-107.5°). Latency and amplitude of cortical potentials were observed with the value of the latency extension more than 10% and peak amplitude reduction more than 50% defined as abnormality. The arterial blood pressure (ABP) was used to evaluate the intraoperative blood pressure. ResultThe incidence rate of bilateral CSEP wave abnormalities after blood pressure decline was 9.3% in the surgery of severe scoliosis. One case of CSEP abnormality occurred during the installing of pedicle screws; two cases during the Smith-Petersen osteotomy, and one case during the bone graft after correction. With the ABP dropping to about 92/57 mm Hg (1 mm Hg=0.133 kPa), the amplitude decreased 80% in 24-33 minutes. After the ABP increased to 113/75 mm Hg by treatment, the index was backed up normally in 5-10 minutes. There was no neurological complication after surgery. ConclusionA high incidence rate and significantly decreased amplitude of CSEP abnormality after blood pressure decline in the surgery of severe scoliosis are found. Intraoperative stable blood pressure should be maintained for patients with severe scoliosis. When the amplitude of CSEP decreases followed with blood pressure decline, blood pressure should be actively corrected by treatment, so that the CSEP may get back to normal as soon as possible.
This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects’ brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.