Objective To evaluate the effectiveness and safety of 25G illumination aided scleral buckling surgery for treatment of rhegmatogenous retinal detachment (RRD). Methods This is a retrospective case control study. Fifty-seven RRD patients (57 eyes) were enrolled in this study. There were 35 males (35 eyes) and 22 females (22 eyes). The patients were randomly divided into ophthalmoscope group (29 patients, 29 eyes) and illumination group (28 patients, 28 eyes). There was no differences in the data of gender, age, onset time, logarithm of the minimum angle of resolution (logMAR) best corrected visual acuity(BCVA) and information of retinal tears between the two groups (P>0.050). The patients in the ophthalmoscope group received operation of conventional scleral buckling with binocular indirect ophthalmoscope. The patients in the illumination group received scleral buckling surgery with the aid of intraocular illumination and noncontact wide-angle viewing system. The follow-up was ranged from 6 to 12 months. The BCVA, intraocular pressure, fundus examination and complications were observed and recorded. Results The difference of operation time between two groups was significant (t=2.124, P=0.031). In the ophthalmoscope group, 26 eyes (89.7%) achieved retinal reattachment, 3 eyes (10.3%) failed in retinal reattachment. In the illumination group, 26 eyes (92.8%) achieved retinal reattachment, 2 eyes (7.2%) failed in retinal reattachment. There was no difference of retinal reattachment rate (P=1.000). Five eyes failed in retinal reattachment, 3 eyes received sclera buckling surgery, 2 eyes received vitrectomy with silicone oil tamponade. The final reattachment ratios were both 100%. BCVA increased in both groups compared with pre-surgery BCVA (t=4.529, 5.108; P<0.001). The difference of BCVA between two groups was not significant (t=0.559, P=0.458). There was no significant difference of intraocular pressure and complications before and after surgery in both two groups (t=−1.386, −1.437; P=0.163, 0.149). The difference of intraocular pressure between two groups was not significant (t=0.277, P=0.730). Subretinal hemorrhage occurred in 1 eye in the ophthalmoscope group. There was no iatrogenic retinal break, choroidal hemorrhage and endophthalmitis in the two groups. Conclusion 25G intraocular illumination aided buckling surgery for treatment of RRD is fast, safe and effective.
ObjectiveTo create a new scleral buckling surgery using noncontact wide-angle viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment (RRD), and to evaluate its safety and effectiveness. MethodsA scleral buckling surgery using noncontact wide-angle viewing system and 23-gauge intraocular illumination was performed in 6 eyes of 6 patients with RRD, including 2 males and 4 females. The mean age was 51 years old with a range from 23 to 66 years old. Proliferative vitreoretinopathy (PVR) were diagnosed of grade B in all 6 eyes. Duration of retinal detachments until surgery was 5.8 days with a range from 2 to 13 days. The mean preoperative intraocular pressure (IOP) was 12 mmHg with a range from 9 to 15 mmHg (1 mmHg=0.133 kPa). A 23-gauge optic fiber was used to provide an intraocular illumination. Fully examination of the ocular fundus and cryoretinopexy of retinal breaks was performed under a noncontact wide-angle viewing system. Subretinal fluid drainage through the sclerotomy and buckling procedure were performed under the operating microscope. Intravitreal injection of sterile air bubble was performed in 4 eyes. Antibiotic eye drops was applied in all eyes postoperatively, and all the eyes were followed up for at least 6 months. ResultsRetinal reattachment was achieved in all eyes, and the conjunctiva healed well. The best corrected visual acuity (BCVA) increased in all eyes. The mean postoperative IOP was 15 mmHg with a range from 12 to 19 mmHg. No complications were found intra and postoperatively. ConclusionsThis new scleral buckling surgery using noncontact wide-angle viewing system and 23-gauge intraocular illumination for RRD is safe and effective. Advantages such as higher successful rate, less complication, shorter operating time, and less discomfort of patients were showed comparing with the previous scleral buckling surgery using indirect ophthalmoscope.
Objective To observe the surgical outcome of the modified transconjunctival technique for minimal segmental buckling on rhegmatogenous retinal detachment (RRD). Methods This is a retrospective case series. Seventy-six patients (78 eyes) with uncomplicated RRD who underwent the modified transconjunctival technique for minimal segmental buckling were enrolled in this study. There were 41 male (42 eyes) and 35 female (36 eyes). The average age was (33.9±15.6) years. Best corrected vision acuity (BCVA), fundus examination with three-mirrors lens, ocular B ultrasound, optical coherence tomography (OCT) were performed in all patients. BCVA was examined through Standard logarithmic visual acuity chart and transferred to logMAR vision for statistical analysis. The logMAR BCVA was 0.88±0.88. The technique was successfully performed in all 78 eyes. After transconjunctival location of the retinal break was made, a 5 to 6 mm radial conjunctival incision was performed corresponding to the retinal break without cutting the limbal conjunctiva–Tenon’s capsule. After cryopexy, a minimal explant was fixed with one to two sutures through the conjunctival opening, expanded by a pediatric speculum. BCVA, intraocular pressure, tear film stability, conjunctival recovery and retinal reattachment were collected 1 week, 1 month, 3 months, 6 months after surgery. Results One week after surgery, retinal reattachments were achieved in 77 of 78 (98.7%) eyes and 1 eye (1.3%) received vitrectomy. Compared before surgery, the logMAR BCVA improved to 0.44±0.41, with significant difference (t=3.092, P<0.01). Conjunctival incision tear occurred in 1 eye. Subretinal hemorrhage occurred in 5 eyes during subretinal fluid drainage procedure. Subretinal hemorrhage occurred in 5 eyes during subretinal fluid drainage procedure. Hemorrhage was absorbed in 2 of the 5 eyes at 3 months after surgery and absorbed in all 5 eyes at 6 months after surgery. Subretinal fluid occurred in 10 eyes at 1 week after surgery and be absorbed completely at 6 months after surgery. Tear film stability improved to preoperative lever at 1 week after surgery. Less change in corneal and conjunctival sensitivity was observed in all eyes. No other surgical complications were observed within the follow-up period, such as scleral perforation, explant extrusion, diplopia or infection. Conclusions The modified transconjunctival technique for minimal segmental buckling minimizes the damage to conjunctiva without reducing the retinal reattachment rate. It can effectively treat uncomplicated RRD with preserving an intact limbal conjunctiva and rapid tear film stability recovery.
Objective To observe the clinical characteristics of severe ocular detonator explosive injuries and to evaluate the therapeutic effects of vitrectomy on it. Methods Clinical data of 37 consecutive patients (65 eyes) with severe ocular detonator explosive injuries were retrospectively analyzed. The patients included 36 males and 1 female with the average age of 28.6 years. The biocular injuriy was in 31 cases (83.8 %), and one-eyed injury was in 6 cases (16.2%). A total of 48 eyes had severe explosive injury. The visual acuity was no light perception in 9 eyes in which 3 eyeballs were obviously atrophic, light perception in 28 eyes, hand moving in 4 eyes, and counting finger/33 cm in 7 eyes. Vitrectomy was performed on 46 eyes, in which 41 had severe ocular explosive injury. There were no vitreous surgery indications in 13 eyes of 19 eyes didnprime;t undergo surgery; the other 6 eyes didnprime;t undergo surgery due to the atrophic eyeballs or economic reasons. The treating time after trauma was within 1 week in 7 patients (18.9%), 1 week to 1 month in 13 (35.2%), and more than 1 month in 17 (45.9%). The follow-up duration lasted 6 months to 2 years after operation with the average of 8.6 months. Results In 65 eyes, the occupation ratio of conjunctival foreign bodies was 66.2%; corneal foreign bodies was 46.2%; vitreous hemorrhage was 70.8%; intraocular foreign bodies (IOFB) was 69.2%; retinal shocking injury or optic nerve blasting injury was 56.9%. The visual acuity improved in 33 eyes, remained unchanged in 25 eyes, and decreased in 7 eyes. In 46 eyes which had undergone vitrectomy, IOFB injuries was in 35 eyes (76.1%); the visual acuity increased in 26 eyes (59.5%), remained unchanged in 13 eyes (28.3%), and didnprime;t cure in 7 eyes (15.2%) in which 2 eyes underwent ocular enucleation and 5 eyes were atrophic. The increasing rate of visual acuity in the patients who accepted the treatment more than 1 month after injury was low. The occupation ratio of monocular blindness was 51.4% and biocular blind was 8.1%. Conclusions Most of severe ocular explosive injuries by detonator are with IOFB. causes of the high blinding rate are late treatment and serious injury. Strengthening the diagnosis and treatment of retinal shock and optic nerve blast, and performing vitrectomy as soon as possible can improve prognositc visual function of injured eyes.