In the expert consensus published by the Pediatrics in 2013, it was first proposed that anti-VEGF drugs can be considered for retinopathy of prematurity (ROP) with stage 3, zone Ⅰ with plus disease. However, there are many problems worth the attention of ophthalmologists, including the advantages and disadvantages of anti-VEGF therapy compared with traditional laser therapy, systemic and ocular complications after anti-VEGF therapy, and what indicators are the end points of anti-VEGF therapy. Combined with this consensus and numerous research findings, we recommend that the first treatment for anti-VEGF or laser therapy should be considered from disease control effects. For the threshold and pre-threshold lesions, the effect of anti-VEGF therapy for zoneⅡ lesions is better than that for zone Ⅰ lesions and the single-time effective rate is high. So, it is suggested that anti-VEGF therapy should be preferred for the first treatment. The choice of repeat treatment should be considered from the final retinal structure and functional prognosis. Laser therapy is advisable for the abnormal vascular regression slower and abnormalities in the posterior pole. It can reduce the number of reexaminations and prolong the interval between re-examinations. However, the premature use of laser has an inevitable effect on peripheral vision field. Excluding the above problems, supplemental therapy can still choose anti-VEGF therapy again. Most of the children with twice anti-VEGF therapy are sufficient to control the disease. Anti-VEGF therapy should be terminated when there are signs such as plus regression, threshold or pre-threshold lesions controlled without recurrence, peripheral vascularization, etc.
ObjectiveTo systematically review the efficacy and safety of photodynamic therapy (PDT) and intravitreal vascular endothelial growth factor (VEGF) inhibitors in the treatment of polypoidal choroidal vasculopathy (PCV), and to investigate the primary treatment tentatively. MethodsA systematic search of Pubmed, Embase, the Cochrane Library and the Wanfang Data was performed to identify all comparative studies that compared the outcomes of PDT alone, intravitreal VEGF inhibitors alone and combined intravitreal VEGF inhibitors and photodynamic therapy. Outcomes of interest included the regression and recurrence rate of polypoidal lesions, best corrected visual acuity (BCVA), central retinal thickness (CRT), therapeutic times, and the occurrence rate of adverse events. 2 randomized controlled trials (RCT) and 19 non-RTCs were identified. According to treatment methods, the data extracted was classified to 3 groups, analyzed with odds ratio (OR), weighted mean difference (WMD) and 95%confidence interval (95%CI). ResultsMeta-analysis suggests that the regression rate of polypoidal lesions (OR=0.34, 0.07; 95%CI=0.13-0.88, 0.02-0.36) and BCVA (WMD=0.25, 0.11; 95%CI=0.14-0.36, 0.01-0.21) in combined therapy group were significantly better than those in PDT group and intravitreal VEGF inhibitors group (P < 0.05). The recurrence rate of polypoidal lesions in PDT group was significantly lower than intravitreal VEGF inhibitors group (OR=0.35, 95%CI=0.16-0.74, P=0.006). BCVA (P=0.025) and the occurrence rate of adverse events (OR=60.36, 95%CI=6.04-603.50, P=0.000 5) in intravitreal VEGF inhibitors group were significant better than PDT group. ConclusionsCombined treatment appeared to be superior to PDT alone or intravitreal VEGF inhibitors alone. Combined treatment takes priority over all others in the primary treatment of PCV.
Objective To compare the features of OCT angiography (OCTA) between neovascular age-related macular degeneration (nAMD) and myopic choroidal neovascularization (mCNV) patients before and after intravitreal anti-VEGF treatment. Methods A prospective cohort study. Twenty-nine patients (37 eyes) with nAMD (19 males and 10 females, aged 68.20±8.76) and 31 patients (34 eyes) with mCNV (9 males and 22 females, aged 43.10±11.80, with the mean diopter of −9.71±1.20 D) from Department of Ophthalmology, West China Hospital of Sichuan University during May and December 2017 were included in this study. Ranibizumab or Conbercept (0.5 mg/0.05 ml) was intravitreally injected in all eyes. The patients were follow-up for 3−6 months. The OCTA was conducted before treatment and 1 day, 1 week, 1 month and 3−6 months after treatment. In order to ensure that the scanning position was the same, the tracking mode was adopted for each scanning. According to the OCTA images, the lesion area, parafoveal superficial vessel density and perfusion area were measured and analyzed contrastively between nAMD and mCNV patients. Results The mean lesion area before and 1 month after treatment in nAMD patients were 0.38±1.87 mm2 and 0.06±0.12 mm2, while in mCNV patients, those were 0.26±1.06 mm2 and 0.03±0.05 mm2, respectively. There were statistically significant differences (Z=4.181, 4.475; P<0.001) in CNV lesion area before and 1 month after treatment between nAMD and mCNV patients. Compared with those before treatment, the absolute change (Z=1.853, P=0.064) and the percentage changes (t=2.685, P=0.010) of CNV lesion area 1 month after treatment in nAMD and mCNV patients show a statistical meaning. There were significantly decreases in both parafoveal superficial vessel density (F=8.997, P=0.003) and perfusion area (F=7.887, P=0.015) 3 months after treatment in nAMD patients, while decreases in parafoveal superficial vessel density (F=11.142, P=0.004) and perfusion area (F=7.662, P=0.013) could be detected 1 day after treatment in mCNV patients, before rising 1 month after treatment. Conclusions There are significantly differences in lesion area before and after the treatment of intravitreal anti-VEGF between nAMD and mCNV patients by OCTA examination. Moreover, the changes of both parafoveal superficial vessel density and perfusion area after anti-VEGF treatment are statistically different in two groups.
ObjectiveTo analyze the influencing factors on clinical response to conbercept for diabetic macular edema (DME).MethodsA total of 51 patients (51 eyes) with DME who underwent intravitreal injection of conbercept were included in this retrospective study. The general information (age, sex, body mass index, smoking history, drinking history), blood glucose indicators (duration of diabetes, fasting blood glucose, HbA1c), blood pressure indicators (history of hypertension, systolic blood pressure, diastolic blood pressure), lipid indicators [total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein A (APOA)], biochemical indicators [neutrophil concentration, hemoglobin (HB), serum creatinine (Scr)] were collected. The best corrected visual acuity (BCVA) and macular central macular thickness (CMT) before and after treatment were comparatively analyzed. CMT reduced not less than 20% and BCVA increased by 2 lines as effective standards. Univariate analysis and multivariate logistic regression analysis were used to determine the factors affecting the efficacy of intravitreal injection of conbercept in patients with DME.ResultsUnivariate analysis showed that diastolic blood pressure, HDL, serum neutrophil concentration, baseline CMT and baseline BCVA were associated with edema regression (P<0.05); HbA1c was associated with vision improvement (P<0.05). Multivariate logistic regression analysis showed that there was a history of smoking (OR=0.122, 95% CI 0.017 − 0.887), low diastolic blood pressure (OR=0.850, 95%CI0.748 − 0.966), low HDL (OR=0.007, 95%CI 0.000 1 − 0.440), thin baseline CMT (OR=0.986, 95%CI0.977 − 0.995) were independent risk factors for failure outcome of edema regression (P<0.05); long duration of diabetes (OR=1.191, 95%CI 1.011 − 1.404), high APOA (OR=1.007, 95% CI 1.000 − 1.013) were independent risk factors for failure outcome of vision improvement. Age, fasting blood glucose, systolic blood pressure, TC, HB, Scr and other indicators had no effect on the efficacy of edema regression and vision improvement after treatment (P>0.05).ConclusionsSmoking history, long duration of diabetes, low diastolic blood pressure, low HDL level, high APOA level and thin baseline CMT are independent risk factors for the treatment of DME with intravitreal injection of conbercept.
Wet age-related macular degeneration (wAMD) is caused by choroidal neovascularization (CNV), which occurs when the choroidal new capillaries reach the RPE layer and photoreceptor cell layer through the ruptured Bruch membrane, leading to neovascularization bleeding, leakage, and scarring. In view of the important role of VEGF in the development of CNV, targeted therapy with various intraocular anti-VEGF drugs is the first-line treatment for wAMD. However, the efficacy of anti-VEGF drugs in the treatment of wAMD is affected by a variety of factors, and some patients still have problems such as unresponsiveness, drug resistence, tachyphylaxis, long-term repeated injections, and severe adverse effects. It is the direction of future researches to deeply explore the physiological and pathological process of wAMD, find the cause of CNV formation, and seek better therapies.
The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
ObjectiveTo observe the clinical effect of intravitreal injection of tissue plasminogen activator (t-PA), ranibizumab and C3F8 in the treatment of early submacular hemorrhage (SMH) induce to polypoid choroidal vasculopathy (PCV).MethodsThe clinical data of 20 eyes of 20 patients with early SMH induce to PCV were enrolled in this study. The duration of bleeding in the eye was 7 to 28 days, and the mean duration of bleeding was 14.8±5.6 days. All eyes are measured using the Snellen chart best corrected visual acuity (BCVA), logarithm of the minimum angle of resolution (logMAR) was used to calculate visual acuity. Measure central retinal thickness (CRT) and central retinal pigment epithelial detachment (PED) thickness using frequency-domain optical coherence tomography. The average logMAR BCVA of eyes was 1.73±0.91; the mean CRT was 620.0±275.8 μm; the average central PED thickness was 720.3±261.9 μm. All eyes receive intravitreal injection of t-PA, ranibizumab and C3F8. The intravitreal injection of ranibizumab was administered once a month for 3 consecutive months, followed by an on-demand treatment plan. Mean follow-up time was 9.9±3.6 months. The changes in BCVA, CRT, central PED thickness and clearance degree of SMH at 6 months after treatment were observed.ResultsOn the 6 months after treatment, the average logMAR BCVA, CRT and central PED thickness of the eyes were respectively 0.42±0.37, 290.2±97.4 μm and 41.6±78.1 μm. Compared with baseline, the after treatment BCVA was significantly increased (F=38.14, P=0.000), but the CRT and central PED were significantly decreased (F=7.48, 75.94; P=0.000, 0.000). Among the 20 eyes, 16 eyes of SMH was completely cleared, accounting for 80%;4 eyes was partially cleared, accounting for 20%. No recurrence and systemic or local complications occurred during follow-up of all eyes.ConclusionIntravitreal injection of t-PA, ranibizumab, and C3F8 in the treatment of early SMH induce to PCV can effectively remove SMH, improve vision, reduce CRT and central thickness of PED.
ObjectiveTo observe the effect of intravitreal injection of Conbercept with two different doses in the treatment of retinopathy of prematurity (ROP)and explore the clinical feasibility of ROP treatment by lower dose conbercept.MethodsThis was a prospective study. The premature infants were enrolled with pre-threshold type 1, threshold and acute aggressive posterior retinopathy of prematurity (AP-ROP) from March 2018 to June 2019, who received fundus screening in neonatal intensive care unit (NICU) of Henan Provincial People's Hospital, Henan Eye Hospital. They were randomly divided into two groups. The group A (lower dose group) were received intravitreal injection of conbercept with 0.15 mg/0.015 ml, and those in group B (control group) were received intravitreal injection of conbercept with 0.25 mg/0.025 ml. We checked and recorded the lesion area, stage, scope (according to the clock range), additional lesion (plus), etc. Fundus examination should be performed with the pediatric wide-field fundus imaging system within 7 days after treatment. It was used to observe the plus disese, ridge, regression of neovascularization on ridge, and development of retinal vessels to serrated edge or scarring. The follow-up period was at least 24 weeks. The effect evaluation was divided into recovery, improvement, recurrence and aggravation.ResultsThe 43 ROP subjects (84 eyes) were enrolled including 21 cases (40 eyes) in group A and 22 (44 eyes) in group B. There was no significant difference between the two groups in gender (χ2=1.169), birth age (t=0.283), birth weight (t=0.547), hospitalization days in NICU (t=1.187), first examination time (t=1.811), first injection time (t=0.492), follow-up time (t=0.899) and ROP condition (χ2=0.854) (P>0.05). In group A, 21 eyes (52.5%) were cured, 17 eyes (42.5%) were improved, 2 eyes (5.0%) were recurred, and no aggravating cases were found. In group B, 24 eyes (54.5%) were cured, 14 eyes (31.8%) were improved, 6 eyes (13.6%) were recurred, and no aggravating cases were found. There was no significant difference of the cure rate (χ2=2.210, P>0.05) and effective (recovery and improvement) rate (χ2=1.814, P=0.269)between two groups after the first injection.ConclusionIntravitreal injection of conbercept with the two doses should be effective in the treatment of ROP.