west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑网络" 23 results
  • Application of graph theory-based brain network in developmental and epileptic encephalopathy

    Developmental and epileptic encephalopathy (DEE) is a group of diseases that severely affects the neurological development of children, characterized by frequent seizures and significant neurodevelopmental impairments. These diseases not only impact the quality of life of affected children but also impose a heavy burden on families and society. In recent years, the development of brain network theory has provided a new perspective on understanding the pathological mechanisms of DEE, especially the role of structural and functional brain networks in the process of epilepsy. This review systematically summarized the research progress of structural and functional brain networks in DEE, highlighted their importance in seizure activity, disease progression, and prognosis evaluation.

    Release date:2025-01-11 02:34 Export PDF Favorites Scan
  • Brain network theory, the significance and practice in clinical epileptology

    Currently, about one-third of patients with anti-epilepsy drug or resective surgery continue to have sezure, the mechanism remin unknown. Up to date, the main target for presurgical evaluation is to determene the EZ and SOZ. Since the early nineties of the last century network theory was introduct into neurology, provide new insights into understanding the onset, propagation and termination. Focal seizure can impact the function of whole brain, but the abnormal pattern is differet to generalized seizure. Brain network is a conception of mathematics. According to the epilepsy, network node and hub are related to the treatment. Graphy theory and connectivity are main algorithms. Understanding the mechanism of epilepsy deeply, since study the theory of epilepsy network, can improve the planning of surgery, resection epileptogenesis zone, seizure onset zone and abnormal node of hub simultaneously, increase the effect of resectiv surgery and predict the surgery outcome. Eventually, develop new drugs for correct the abnormal network and increase the effect. Nowadays, there are many algorithms for the brain network. Cooperative study by the clinicans and biophysicists instituted standard and extensively applied algorithms is the precondition of widely used clinically.

    Release date:2024-01-02 04:10 Export PDF Favorites Scan
  • Review on the relationship between selective attention and neural oscillations

    Selective attention promotes the perception of brain to outside world and coordinates the allocation of limited brain resources. It is a cognitive process which relies on the neural activities of attention-related brain network. As one of the important forms of brain activities, neural oscillations are closely related to selective attention. In recent years, the relationship between selective attention and neural oscillations has become a hot issue. The new method that using external rhythmic stimuli to influence neural oscillations, i.e., neural entrainment, provides a promising approach to investigate the relationship between selective attention and neural oscillations. Moreover, it provides a new method to diagnose and even to treat the attention dysfunction. This paper reviewed the research status on the relationship between selective attention and neural oscillations, and focused on the application prospects of neural entrainment in revealing this relationship and diagnosing, even treating the attention dysfunction.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Research on effects of low-frequency repetitive transcranial magnetic stimulation over primary motor cortex on functional connectivity of brain

    Repetitive transcranial magnetic stimulation (rTMS) can influence the stimulated brain regions and other distal brain regions connecting to them. The purpose of the study is to investigate the effects of low-frequency rTMS over primary motor cortex on brain by analyzing the brain functional connectivity and coordination between brain regions. 10 healthy subjects were recruited. 1 Hz rTMS was used to stimulate primary motor cortex for 20 min. 1 min resting state electroencephalography (EEG) was collected before and after the stimulation respectively. By performing phase synchronization analysis between the EEG electrodes, the brain functional network and its properties were calculated. Signed-rank test was used for statistical analysis. The result demonstrated that the global phase synchronization in alpha frequency band was decreased significantly after low-frequency rTMS (P<0.05). The phase synchronization was down-regulated between motor cortex and ipsilateral frontal/parietal cortex, and also between contralateral parietal cortex and bilateral frontal cortex. The mean degree and global efficiency of brain functional networks in alpha frequency band were significantly decreased (P<0.05), and the mean shortest path length were significantly increased (P<0.05), which suggested the information transmission of the brain networks and its efficiency was reduced after low-frequency rTMS. This study verified the inhibition function of the low-frequency rTMS to brain activities, and demonstrated that low-frequency rTMS stimulation could affect both stimulating brain regions and distal brain regions connected to them. The findings in this study could be of guidance to clinical application of low-frequency rTMS.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Automatic epilepsy detection with an attention-based multiscale residual network

    The deep learning-based automatic detection of epilepsy electroencephalogram (EEG), which can avoid the artificial influence, has attracted much attention, and its effectiveness mainly depends on the deep neural network model. In this paper, an attention-based multi-scale residual network (AMSRN) was proposed in consideration of the multiscale, spatio-temporal characteristics of epilepsy EEG and the information flow among channels, and it was combined with multiscale principal component analysis (MSPCA) to realize the automatic epilepsy detection. Firstly, MSPCA was used for noise reduction and feature enhancement of original epilepsy EEG. Then, we designed the structure and parameters of AMSRN. Among them, the attention module (AM), multiscale convolutional module (MCM), spatio-temporal feature extraction module (STFEM) and classification module (CM) were applied successively to signal reexpression with attention weighted mechanism as well as extraction, fusion and classification for multiscale and spatio-temporal features. Based on the Children’s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) public dataset, the AMSRN model achieved good results in sensitivity (98.56%), F1 score (98.35%), accuracy (98.41%) and precision (98.43%). The results show that AMSRN can make good use of brain network information flow caused by seizures to enhance the difference among channels, and effectively capture the multiscale and spatio-temporal features of EEG to improve the performance of epilepsy detection.

    Release date: Export PDF Favorites Scan
  • Research development of real-time functional magnetic resonance imaging neuro-feedback technology based on brain network connectivity

    The emergence of real-time functional magnetic resonance imaging (rt-fMRI) has provided foundations for neurofeedback based on brain hemodynamics and has given the new opportunity and challenge to cognitive neuroscience research. Along with the study of advanced brain neural mechanisms, the regulation goal of rt-fMRI neurofeedback develops from the early specific brain region activity to the brain network connectivity more accordant with the brain functional activities, and the study of the latter may be a trend in the area. Firstly, this paper introduces basic principle and development of rt-fMRI neurofeedback. Then, it specifically discusses the current research status of brain connectivity neurofeedback technology, including research approaches, experimental methods, conclusions, and so on. Finally, it discusses the problems in this field in the future development.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • The changes of white matter diffusion tensor in MRI negative epilepsy comorbid sleep disorder evaluated by tract-based spatial statistics

    Objective To investigate the pathological mechanism of epileptic comorbid sleep disorder by analyzing the changes of cerebral white matter diffusion tensor in patients with sleep disorder with negative magnetic resonance imaging (MRI) epilepsy based on the method of tract-based spatial statistics (TBSS). Methods MRI negative epilepsy patients comorbid sleep disorder who were epileptic patients treated l in China-Japan Union Hospital of Jilin University from January 2020 to December 2022 completed the Epworth sleepiness scale (ESS) and Pittsburgh sleep quality index (PSQI) tests, and those who complained of sleep disorder and PSQI index ≥11 were monitored by nighttime polysomnography (PSG) and those with objective sleep disorder confirmed by PSG were included in the epilepsy comorbid sleep disorder group. Healthy volunteers with matching gender, age, education were included in the health control group. Diffusion tensor image ( DTI) was collected for all subjects by using a 3.0T magnetic resonance scanner. Diffusion parameters were compared between the two groups using TBSS. Results This study included 36 epilepsy patients comorbid sleep disorder and 35 healthy volunteers. epilepsy patients comorbid sleep disorder showed significantly lower fraction anisotropy (FA) (P<0.05) and significantly higher mean diffusivity (MD) (P<0.05) than the health control group . Brain regions with statistical differences in FA reduction included middle peduncle of cerebellum, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum, anterior corona radiata, external capsule and right posterior thalamic radiation.Brain regions with statistical differences in MD degradation included genu of corpus callosum, body of corpus callosum, anterior limb of internal capsule, anterior corona radiata, superior corona radiata, external capsule and right posterior limb of internal capsul. Conclusion Patients with epilepsy comorbidities with sleep disorders have widespread and symmetric white matter damage.The white matter damage is concentrated in the front of the brain.

    Release date:2025-01-11 02:34 Export PDF Favorites Scan
  • Research on the effect of background music on spatial cognitive working memory based on cortical brain network

    Background music has been increasingly affecting people’s lives. The research on the influence of background music on working memory has become a hot topic in brain science. In this paper, an improved electroencephalography (EEG) experiment based on n-back paradigm was designed. Fifteen university students without musical training were randomly selected to participate in the experiment, and their behavioral data and the EEG data were collected synchronously in order to explore the influence of different types of background music on spatial positioning cognition working memory. The exact low-resolution brain tomography algorithm (eLORETA) was applied to localize the EEG sources and the cross-correlation method was used to construct the cortical brain function networks based on the EEG source signals. Then the characteristics of the networks under different conditions were analyzed and compared to study the effects of background music on people’s working memory. The results showed that the difference of peak periods after stimulated by different types of background music were mainly distributed in the signals of occipital lobe and temporal lobe (P < 0.05). The analysis results showed that the brain connectivity under the condition with background music were stronger than those under the condition without music. The connectivities in the right occipital and temporal lobes under the condition of rock music were significantly higher than those under the condition of classical music. The node degrees, the betweenness centrality and the clustering coefficients under the condition without music were lower than those under the condition with background music. The node degrees and clustering coefficients under the condition of classical music were lower than those under the condition of rock music. It indicates that music stimulation increases the brain activity and has an impact on the working memory, and the effect of rock music is more remarkable than that of classical music. The behavioral data showed that the response accuracy in the state of no music, classical music and rock music were 86.09% ± 0.090%, 80.96% ± 0.960% and 79.36% ± 0.360%, respectively. We conclude that background music has a negative impact on the working memory, for it takes up the cognitive resources and reduces the cognitive ability of spatial location.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • VisConnectome: an independent and graph-theory based software for visualizing the human brain connectome

    As a complex system, the topology of human’s brain network has an important effect on further study of brain’s structural and functional mechanism. Graph theory, a kind of sophisticated analytic strategies, is widely used for analyzing complex brain networks effectively and comparing difference of topological structure alteration in normal development and pathological condition. For the purpose of using this analysis methodology efficiently, it is necessary to develop graph-based visualization software. Thus, we developed VisConnectome, which displays analysis results of the brain network friendly and intuitively. It provides an original graphical user interface (GUI) including the tool window, tool bar and innovative double slider filter, brain region bar, runs in any Windows operating system and doesn’t rely on any platform such as Matlab. When importing the user-defined script file that initializes the brain network, VisConnectome abstracts the brain network to the ball-and-stick model and render it. VisConnectome allows a series of visual operations, such as identifying nodes and connection, modifying properties of nodes and connection such as color and size with the color palette and size double slider, imaging the brain regions, filtering the brain network according to its size property in a specific domain as simplification and blending with the brain surface as a context of the brain network. Through experiment and analysis, we conclude that VisConnectome is an effective visualization software with high speed and quality, which helps researchers to visualize and compare the structural and functional brain networks flexibly.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
  • Comparative research on brain networks of children with attention deficit hyperactivity disorder and normal children based on visual cognitive tasks

    Aiming at the difference between the brain networks of children with attention deficit hyperactivity disorder (ADHD) and normal children in the task-executing state, this paper conducted a comparative study using the network features of the visual function area. Functional magnetic resonance imaging (fMRI) data of 23 children with ADHD [age: (8.27 ± 2.77) years] and 23 normal children [age: (8.70 ± 2.58) years] were obtained by the visual capture paradigm when the subjects were performing the guessing task. First, fMRI data were used to build a visual area brain function network. Then, the visual area brain function network characteristic indicators including degree distribution, average shortest path, network density, aggregation coefficient, intermediary, etc. were obtained and compared with the traditional whole brain network. Finally, support vector machines (SVM) and other classifiers in the machine learning algorithm were used to classify the feature indicators to distinguish ADHD children from normal children. In this study, visual brain function network features were used for classification, with a classification accuracy of up to 96%. Compared with the traditional method of constructing a whole brain network, the accuracy was improved by about 10%. The test results show that the use of visual area brain function network analysis can better distinguish ADHD children from normal children. This method has certain help to distinguish the brain network between ADHD children and normal children, and is helpful for the auxiliary diagnosis of ADHD children.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content