west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑电图" 169 results
  • Study on classification and identification of depressed patients and healthy people among adolescents based on optimization of brain characteristics of network

    To enhance the accuracy of computer-aided diagnosis of adolescent depression based on electroencephalogram signals, this study collected signals of 32 female adolescents (16 depressed and 16 healthy, age: 16.3 ± 1.3) with eyes colsed for 4 min in a resting state. First, based on the phase synchronization between the signals, the phase-locked value (PLV) method was used to calculate brain functional connectivity in the θ and α frequency bands, respectively. Then based on the graph theory method, the network parameters, such as strength of the weighted network, average characteristic path length, and average clustering coefficient, were calculated separately (P < 0.05). Next, using the relationship between multiple thresholds and network parameters, the area under the curve (AUC) of each network parameter was extracted as new features (P < 0.05). Finally, support vector machine (SVM) was used to classify the two groups with the network parameters and their AUC as features. The study results show that with strength, average characteristic path length, and average clustering coefficient as features, the classification accuracy in the θ band is increased from 69% to 71%, 66% to 77%, and 50% to 68%, respectively. In the α band, the accuracy is increased from 72% to 79%, 69% to 82%, and 65% to 75%, respectively. And from overall view, when AUC of network parameters was used as a feature in the α band, the classification accuracy is improved compared to the network parameter feature. In the θ band, only the AUC of average clustering coefficient was applied to classification, and the accuracy is improved by 17.6%. The study proved that based on graph theory, the method of feature optimization of brain function network could provide some theoretical support for the computer-aided diagnosis of adolescent depression.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • 国际抗癫痫联盟诊断方法委员会儿科手术治疗协作组报告——诊断性检查在可外科治疗的儿童癫痫中的应用

    对于经过严格筛选的儿童耐药性局灶性癫痫病例, 外科手术是取得无痫性发作的成功手段。医学技术的发展使癫痫患者可以获得更精准的术前评估, 同时患者获得癫痫外科手术治疗的机会也有所增加。如今已在临床应用的癫痫灶评估方法不仅耗费资源而且在特定病例中不起作用, 抑或是副作用大。因此有必要及时制定标准化的术前评估流程。各项检查在特定临床病理类型的病例中的作用尚缺乏1级或2级证据支持。基于这一现状, 国际抗癫痫联盟(ILAE)的诊断与儿科学组的儿童癫痫外科协作组将各成员间的共识总结为专家建议发表。旨在减少将各项检查的利用不足, 同时促进临床更灵活地运用各项检查, 使现有的儿童癫痫中心尽可能标准化地进行癫痫的术前评估。

    Release date: Export PDF Favorites Scan
  • 新型冠状病毒感染伴发癫痫及其发病机制与脑电图改变

    新型冠状病毒感染(Corona virus disease 2019,COVID-19)是一种由冠状病毒(SARS-CoV-2)导致的新型传染性疾病。关于COVID-19与癫痫之间的关系,有研究认为癫痫发作和COVID-19无明显关系;但也有不少学者认为,癫痫发作是COVID-19的继发症状,甚至是早期症状。COVID-19患者中癫痫发作发生率为0.08%~1.9%。COVID-19出现癫痫发作的直接发病机制是,SARS-COV-2能够直接进入并感染中枢神经系统,引起脑膜炎和脑炎,从而引起癫痫发作。间接发病机制包括:中枢神经系统炎症(细胞因子风暴)、血-脑屏障的破坏、凝血异常、脑卒中、线粒体功能异常、电解质紊乱。新发作和频发癫痫发作的患者可能导致预后更差,死亡率更高。COVID-19伴发癫痫患者中脑电图(Electroencephalogram,EEG)改变的主要表现为:基本节律不同程度的慢化、节律性慢活动、癫痫样放电(包括周期性放电和散在性棘波、尖波等)。癫痫患者EEG的异常部位主要分布在额叶,然而,异常EEG表现并无特异性。

    Release date: Export PDF Favorites Scan
  • 利用自动病变检测规划立体定向脑电图:可行性回顾性研究

    本回顾性横断面研究评估了将深度学习的难治性癫痫患儿的结构性磁共振成像(MRI)纳入到规划立体定向脑电图(SEEG)植入的可行性和潜在益处。本研究旨在评估自动病变检测与 SEEG 检测出癫痫发作起始区(SOZ)之间的共定位程度。将神经网络分类器应用于基于皮层 MRI 数据的三个队列:① 对 34 例局灶性皮质发育不良(FCD)患者的神经网络进行学习、训练和交叉验证;② 对 20 名健康儿童对照者进行特异性评估;③ 对 34 例患儿纳入 SEEG 植入计划的可行性进行了评价。SEEG 电极触点的坐标与分类器预测的病变进行核验。临床神经生理学家鉴定癫痫发作起源和易激惹区的 SEEG 电极触点位置。若 SOZ 坐标点和分类器预测的病变之间的距离<10 mm 则被认为是共定位的。影像学诊断病灶的分类敏感度为 74%(25/34)。对照组中未检测到异常(特异性=100%)。在 34 例 SEEG 植入患者中,21 例有局灶性皮层 SOZ,其中 8 例经病理证实为 FCD。分类器正确地检测了这 8 例 FCD 患者中的 7 例(86%)。组织病理学存在异质性的局灶性皮层病变患者中,62% 的患者分类器输出结果与 SOZ 之间存在共定位。3 例患者中,电临床提示为局灶性癫痫,SEEG 上无 SOZ 定位点,但在这些患者中,分类器识别了尚未植入的额外异常点。自动病变检测与 SEEG 之间的共定位存在高度的一致性。 我们已经建立了一个框架,将基于深度学习的 MRI 自动病变检测纳入到 SEEG 植入计划。我们的发现支持了对自动 MRI 分析的前瞻性评估,以规划最佳电极植入轨迹方案。

    Release date:2021-08-30 02:33 Export PDF Favorites Scan
  • A case of Aicardi-Goutières syndrome

    ObjectiveAicardi and Goutières syndrome was first reported as a rare hereditary encephalopathy with white matter involvement in 1984. Typical clinical manifestations include severe mental motor development retardation or regression, pyramidal and extrapyramidal symptoms and signs, epilepsy, microcephaly and frostbite.MethodsTo collect a case of patient who presented with convulsions 14 days after birth without obvious inducement. The child was diagnosed as epilepsy in the local hospital and the symptoms improved after treatment with antiepileptic drugs. At 4 months, the child presented nods and clenched fists, and was diagnosed as infantile spasm. After Adrenocorticotrophic hormone and drug treatment, the symptoms gradually improved. Due to upper respiratory track infection, the child was aggravated at the age of 1 year and 2 months, and then diagnosed as Aicardi-Goutières syndrome by video EEG, skull MRI, fundus and gene screening.ResultsSurgery and treatment with antiepileptic drugs significantly improved the symptoms of the child, and the pathological biopsy of the brain tissue supported the previous diagnosis.ConclusionsThe report of this case will help to improve the clinician's diagnosis and treatment of Aicardi-Goutières syndrome.

    Release date:2019-03-21 11:04 Export PDF Favorites Scan
  • 高频脑电振荡:临床研究综述

    现代脑电图(EEG)技术的进步增强了对经典伯杰频段外,包含重要信息的脑电信号的识别。在癫痫领域,近十年的相关研究主要集中在发作间期>80 Hz 的高频振荡(High frequency oscillations, HFOs)。HFOs 大型临床应用始于癫痫手术术前的评估,近来也开始用于评估癫痫严重程度和监测抗癫痫疗效。该综述总结了 HFOs 在癫痫临床应用的证据,重点介绍了最新的进展。近期大量文献强调了 HFOs 与术后癫痫预后关系,一篇近期的 Meta 分析证实术后癫痫未发作患者 HFOs 切除率高于术后发作患者,利用术后 EEG 中的残留 HFOs 比术前 HFOs 率对癫痫手术预后预测更准确。文章深入讨论了区分生理性和癫痫性 HFOs 的尝试,这可能进一步加强 HFOs 的特异度。如睡眠结构分析表明,在痫灶内外对 HFOs 的偶联有差异。同时,越来越多的证据表明,HFOs 可用于对评估疾病活动度和利用非侵入性 EEG 和脑磁图(MEG)等检查中评估治疗效果。鉴于儿童 EEG 中 HFOs 比例高,这一技术在患儿中有良好的前景。在婴儿痉挛症中经促肾上腺皮质激素治疗后 HFOs 比例下降。在Rolandic区棘波时出现 HFOs 与发作频率相关。耗时的人工评估是过去 HFOs 临床应用的障碍,目前这一问题可由可靠的计算机算法解决。过去十年,HFOs 研究有了长足进展,利用非侵入性手段检测 HFOs 已在大量患者中得到应用。期待未来有多中心、大样本量研究获取长程监测资料,为这一领域提供更多信息。

    Release date:2018-11-21 02:23 Export PDF Favorites Scan
  • Brain Function Network Analysis and Recognition for Psychogenic Non-epileptic Seizures Based on Resting State Electroencephalogram

    Studies have shown that the clinical manifestation of patients with neuropsychiatric disorders might be related to the abnormal connectivity of brain functions. Psychogenic non-epileptic seizures (PNES) are different from the conventional epileptic seizures due to the lack of the expected electroencephalographically epileptic changes in central nervous system, but are related to the presence of significant psychological factors. Diagnosis of PNES remains challenging. We found in the present work that the connectivity between the frontal and parieto-occipital in PNES was weaker than that of the controls by using network analysis based on electroencephalogram (EEG) signals. In addition, PNES were recognized by using the network properties as linear discriminant nalysis (LDA) input and classification accuracy was 85%. This study may provide a feasible tool for clinical diagnosis of PNES.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • 成人癫痫监测单元的质量和安全性:系统评价和Meta分析

    癫痫监测单元 (Epilepsy monitoring unit,EMU) 在优化癫痫人群管理方面是一项很有价值的资源,但也许会因为在其停止治疗和诱导发作的过程而将患者置于一定的风险之中。研究目的是总结已有的关于EMU质量和安全性的数据,从而得出能够指导未来EMU发展相关的一些指标。根据系统评价和Meta分析推荐的分析和汇报标准进行系统评价。文献的搜索方法为在6个医学数据库以及会议进展中广泛搜索与EMU相关的名词及其同义词。针对纳入文献,提取病人和EMU的特征信息以及与质量、安全性相关的变量。根据一个共计15项的修正版流行病学观察性研究汇报重点 (Strengthening the Reporting of Observational Studies in Epidemiology,STROBE) 的对照表进行文献质量的评估分析。研究得出的证据建立在描述性统计和Meta分析的基础上。共计搜索出7 601篇相关文献,其中604篇回顾了全文,最终纳入135项研究。由此而得出的分析结果建立在181 823例患者和34项不同的与质量和安全性相关的变量纳入的研究。患者数 (108项研究,中位患者数为171.5例),患者年龄 (49项研究,中位患者年龄为35.7岁) 以及患者收治入EMU的原因 (34项研究)。其中与质量和安全性相关最普遍的相关汇报为收治入EMU的有效性 (38项研究)。有33项研究 (24.4%) 汇报了不良事件,由此而得出的不良事件发生概率为7%[95% CI(5%-9%)]。这些关于EMU的文献平均质量评估得分为73.3%(方差为17.2)。研究说明了不同研究在汇报EMU的质量及安全性方面有很大的差异。不同研究之间的研究质量也有较大的差异。目前这些发现都突出了在评估EMU急需发展出一套建立在证据和共识基础上的质量评估标准。

    Release date:2017-04-01 08:51 Export PDF Favorites Scan
  • Thalamocortical Neural Mass Model Simulation and Study Based on Field Programmable Gate Array

    Using the computer to imitate the neural oscillations of the brain is of great significance for the analysis of brain functions. Thalamocortical neural mass model (TNMM) reflects the mechanisms of neural activities by establishing the relationships between the thalamus and the cortex, which contributes to the understanding of some specific cognitive functions of the brain and the neural oscillations of electroencephalogram (EEG) rhythms. With the increasing complexity and scale of neural mass model, the performance of conventional computer system can not achieve rapid and large-scale model simulation. In order to solve this problem, we proposed a computing method based on Field Programmable Gate Array (FPGA) hardware in this study. The Altera's DSP Builder module combined with MATLAB/Simulink was used to achieve the construction of complex neural mass model algorithm, which is transplanted to the FPGA hardware platform. This method takes full advantage of the ability of parallel computing of FPGA to realize fast simulation of large-scale and complex neural mass models, which provides new solutions and ideas for computer implementation of neural mass models.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • The Lateralization of Ictal Scalp EEG in Focal Epilepsy

    ObjectiveTo investigate the lateralization of ictal scalp EEG in different times in focal epilepsy.Methods356 surface ictal EEG of 41 patients were reviewed retrospectively in focal epilepsy arising from the mesial frontal, lateralfrontal, mesialtemporal, neocorticaltemporal, insular lobes and posterior cortex from July, 2010 to at, 2016. Each ictal scalp EEG was subdivided into ten epoches (E1-E10), then the lateralization of every epoch was analyzed. Ten epochs EEG were merged into three timesas E1-E3, E4-E6 and E7-E10. The ratio of lateralization, mislateralization and non-lateralization of each timeEEG were studied. Ictal onset zone (IOZ) were precise localized by intracranial EEG. The results of epileptogenic zone corresponded with surgical outcomes as seizure free or decreased.Results62% seizures were lateralized by surface ictal EEG in all epilepsies. Lateralized ictal scalp EEG were seen in nearly 80% of seizures in all times in temporal lobe epilepsy (TLE). The highest lateralization of 89% occurred inE4-E6 andfalse lateralization up to 30% in E1-E3 in mesial temporal lobe epilepsy (MTLE), whereas 95% lateralized seizures emerged in E1-E3 in neocortical temporal lobe epilepsy (NTLE). Apparent non-lateralization in all times were higher than lateralization in frontal lobe epilepsy (FLE), especially in mesial frontal lobe epilepsy (MFLE). Lateralization in E1-E3 was only 24% higher than other times. In addition, False lateralization never occurred in all times in lateral frontal lobe epilepsy (LFLE). There were maximum of 83%lateralized seizures in E1-E3 in LFLE and 93% in E1-E3 in posterior cortex epilepsy (PCE). Seizures arising from insular lobe epilepsy (ILE) tendedto predict less lateralization in all times.ConclusionsIctal scalp EEG of E1-E3 are valuable in the lateralization in all epilepsies particularly in LFLE, NTLE and PCE. Lateralized E4-E6 and E7-10 are very useful in MTLE.

    Release date:2020-01-09 08:49 Export PDF Favorites Scan
17 pages Previous 1 2 3 ... 17 Next

Format

Content