【摘要】 目的 探讨慢性缺氧对大鼠岩神经节神经元酸敏感离子通道(acid-sensing ion channels,ASICs)亚型3(ASIC3)和亚型2a(ASIC2a)表达的影响。 方法 将12只健康成年SD大鼠随机分为正常组和缺氧组。用免疫组织化学法(PV)观察正常和慢性缺氧大鼠岩神经节神经元ASIC3和ASIC2a的表达。 结果 给予慢性缺氧刺激后,岩神经节ASIC3阳性表达神经元数目增多(Plt;0.05),灰度值降低(Plt;0.05);而ASIC2a阳性表达神经元数目和灰度值无明显变化(Pgt;0.05)。 结论 慢性缺氧可上调大鼠岩神经节神经元ASIC3的表达,而对ASIC2a的表达无明显影响,提示ASIC3和ASIC2a可能在岩神经节对缺氧的反应中起着不同的作用。【Abstract】 Objective To investigate the effects of chronic hypoxia on expression of acid-sensing ion channels (ASIC) 3 and ASIC2a in neurons of petrosal ganglions of rats. Methods A total of 12 SD rats were randomly assigned to control group and hypoxia group. The expressions of ASIC3 and ASIC2a of the neurons in the petrosal ganglions in the two groups were investigated with the immunohistochemical technique. Results The level of positive ASIC3 expression in the petrosal ganglions was higher in the hypoxia group than that in the control group (Plt;0.05); the difference of positive ASIC2a expression levels between the control group and the hypoxia group was not statistically significant (Pgt;0.05). Conclusion Chronic hypoxia can significantly increase the expression of ASIC3, but not that of ASIC2a, of the neurons in the petrosal ganglions, suggesting their different roles in mediating a cellular response to chronic hypoxia.
ObjectiveTo observe the effects of Rhodiola on the rat retinal tissue morphology and the hypoxia-inducible factor (HIF)-1α at simulated hypoxia at different altitudes. Methods Forty-eight adult female Sprague Dawley rats were randomly divided into the Rhodiola Intervention group (intervention group) and the control group, each group had 24 rats. The intervention group rats were treated with intraperitoneal injection of 10 ml/kg of large plants Rhodiola solution, and the control group rats were injected with same volume of saline. One hour after the injection, six rats were randomly selected from both of the two groups and reared in the plateau environment simulation laboratory modules with the oxygen partial pressure of 17.4, 14.6, 11.3 and 7.4 kPa, which simulated the altitudes of 1500, 3000, 5000 and 8000 meters indoor respectively. Six hours later the rat eyeballs were harvested for paraffin sections and analyzed by hematoxylin and eosin staining, and immunohistochemical staining to observe the expression of HIF-1α and p53. ResultsIn the control group, the rat retinal layers were edema and loose, the retinal thickness increased, the retinal structure was disorganized, the ganglion cells were swollen and degenerated, and some can observe the karyopyknosis, karyolysis and the reduced cells number. As the altitude increased, the pathological changes of retinal became more obvious. In the intervention group, the characteristics of rat retinal morphology were same with the control group, while the degree of morphology changes was lighter than the control group. HIF-1α and p53 expressed mainly in the ganglion cell layer and inner nuclear layer of rat retina in the control group. As altitude increased, the expression of HIF-1α and p53 were increased too, which was positive correlated (r=0.9846, P < 0.05). Compared with the control group, the rat retinal expression of HIF-1α increased, while expression of p53 decreased in the intervention group, and the differences were statistically significant (P < 0.05). ConclusionRhodiola can reduce the retinal tissue pathology damage caused by high altitude hypoxia, and its mechanism may be related to the increasing expression of HIF-1α and reducing expression of p53.
ObjectiveTo investigate the effect of emodin on the expression of hypoxia inducible factor (HIF)-1α protein in rats with severe acute pancreatitis-associated renal injury and explore the possible mechanisms. MethodsA total of 72 rats were randomly divided into sham-operated group (n=24), severe acute pancreatitis with renal injury group (injury group, n=24), and treatment group (n=24). The sham-operated and injury groups were given 1.5 mL saline through intragastric administration before operation while the treatment group was fed with the same amount of 50 mg/kg emodin diluent. The pancreas and pancreatic tail-segment was dissociated and the head of pancreas was occluded in rats to form the model, and blood vessel forceps were loosed after three hours. All the rats were sacrificed 12, 24 and 36 hours after modeling. The level of ascites, serum amylase, creatinine, blood urea nitrogen were detected. Hematoxylin-eosin staining was used to observe the pancreatic and renal pathological changes, and immunohistochemical method was used to detect the expression of HIF-1α protein level in the kidney. ResultsCompared with the sham-operated group, the level of ascites, serum amylase, creatinine, blood urea nitrogen and the expression of HIF-1α protein level increased significantly. The tissue damage of pancreas and the kidney became more serious. Compared with the injury group, the kidney and pancreas function of the treatment group had a better performance. HIF-1α protein level significantly increased in the treatment group, and the difference had a statistical significance (P<0.05). ConclusionEmodin has a good protective effect on severe acute pancreatitis-associated renal injury. It may function through up-regulation expression of HIF-1α protein level to improve the ability of the kidney to tolerate hypoxia, and then reduce the cell apoptosis and necrosis of the kidney.
Objective To investigate the effect of angiopoietin-like protein 3 (ANGPTL3) on lipid metabolism in patients with obstructive sleep apnea (OSA). Methods A total of 59 OSA patients and 20 healthy controls from the First Affiliated Hospital of Zhengzhou University between May 2023 and February 2024 were included in the study. All participants underwent overnight polysomnography (PSG). Based on the apnea-hypopnea index (AHI), the OSA patients were divided into a mild group and a moderate-to-severe group. Morning blood samples were collected after an 8-hour fast to measure lipid profiles and ANGPTL3 levels. Statistical analyses were performed using SPSS 25.0 software. Results The levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and ANGPTL3 were significantly higher, while high-density lipoprotein cholesterol (HDL-C) was significantly lower in the OSA group compared with the control group (P<0.05). ANGPTL3 level was higher in the moderate-to-severe OSA group than that in the mild OSA group and the control group, and higher in the mild OSA group than that in the control group (P<0.05). In the severe hypoxemia group, ANGPTL3 level was significantly higher than that in the mild-to-moderate hypoxemia group (P<0.05). The ANGPTL3 level was also significantly higher in the hyperlipidemia group compared wiht the non-hyperlipidemia group (P<0.05). In the OSA group, ANGPTL3 was positively correlated with TC, TG, percentage of cumulative time with oxygen saturation below 90% in total sleep time (T90) and oxygen desaturation index (ODI), and negatively correlated with lowest arterial oxygen saturation (LSaO2) and mean arterial oxygen saturation (MSaO2). After adjusting for relevant confounding factors, logistic regression analysis indicated that ANGPTL3 might be a potential independent risk factor for OSA, with an odds ratio of 1.021 (95%CI 1.002 - 1.040). Conclusions The level of ANGPTL3 is elevated in OSA patients. The elevation of blood lipid levels in OSA patients may be associated with chronic intermittent hypoxia-induced regulation of ANGPTL3 levels.
Objective To study the correlation between smoking and obstructive sleep apnea (OSA). Methods A total of 454 patients from October 2015 to July 2021 were retrospectively collected for nocturnal polysomnography monitoring (no less than 7 hours). The patients were divided into an OSA group (n=405) and a control group (n=49, patients with primary snoring) according to the results of polysomnography monitoring. According to the apnea hypopnea index (AHI) and the lowest oxygen saturation during sleep, the severity of OSA was classified into a mild to moderate group (5 times/h ≤ AHI<30 times/h) and a severe group (AHI ≥30 times/h). The patients were inquired about their smoking history, then the patients diagnosed with OSA were further divided into a smoking group, a smoking cessation group, and a non-smoking group based on their smoking history. Results The smoking rate of the patients in the OSA group was higher than that in the control group (50.9% vs. 32.7%, P<0.05), while the smoking rate in the severe OSA group was higher than that in the mild to moderate group (55.7% vs. 39.8%, P<0.05). Smoking was positively correlated with AHI, cumulative percentages of time spent at oxygen saturation below 90% (Ts90%), and total apnea time (r value was 0.196, 0.197, 0.163, P<0.05), while negatively correlated with the lowest and average SpO2 during sleep (r value was –0.202, –0.214, P<0.05). The logistic regression analysis with severe OSA as the outcome variable showed that smoking (OR=1.781) and obesity (OR=1.930) were independent risk factors of severe OSA (P<0.05). The comparison between groups of the OSA patients with different smoking states showed that the proportion of severe OSA, AHI, Ts90%, and total apnea time (77.8%, 53.55 times/h, 18.35%, and 111.70 minutes, respectively) of the smoking group were higher than those of the non-smoking group (62.8%, 40.20 times/h, 8.40%, and 76.20 minutes, respectively, P<0.05). The lowest SpO2 and average SpO2 during sleep (69.50%, 93.00%, respectively) of the smoking group were lower than those of the non-smoking group (75.00%, 94.00%, respectively, both P<0.05). The average SpO2 of the smoking cessation group was higher than that of the smoking group (94.00% vs. 93.00%, P<0.05), and the Ts90% of the smoking cessation group was lower than that of the smoking group (6.75% vs. 18.35%, P<0.05). Conclusions Smoking significantly affects the degree of sleep-disordered breathing and may be an independent risk factor for severe OSA. Smoking can exacerbate the severity of OSA and the degree of hypoxia, while smoking cessation can improve the degree of hypoxia in OSA patients.
【Abstract】Objective To investigate the relationship of expressions of cylooxygenase-2 (COX-2) and hypoxia-inducible factor-1α (HIF-1α) in hepatocelluar carcinoma (HCC) and the possible antineoplastic mechanism of selective COX-2 inhibitor. Methods The expressions of COX-2 and HIF-1α in 53 cases of HCC tissues were detected immunohistochemically. Western blot was employed to evaluate the effects of variant concentration of COX-2 inhibitor meloxicam on expression of HIF-1α in Cobaltchloridestimulated SMMC-7721 cell. ResultsOf 53 tumor tissues, the expression of COX-2 was 22/53 (41.5%) bly positive stained, 11/53 (20.8%) positive stained, and 20/53 (37.7%) negative stained. Meanwhile the expression of HIF-1α was 18/53 (34.0%) bly positive stained, 18/53 (34.0%)positive stained, 17/53(32.1%) negative stained. The expression of COX-2 was correlated positively with HIF-1α in HCC (r=0.440, P<0.01). The expression of HIF-1α increased sharply from 0.185±0.057 (no Cobaltchloride-stimulated) to 1.011±0.131 (Cobaltchloride-stimulated), and meloxicam could inhibit the expression of HIF-1α at either condition (P<0.05). ConclusionMeloxicam could inhibit the expression of HIF-1α in a concentration-dependent manner in the Cobaltchloridestimulated SMMC-7721 cell. The antineoplastic activity of selective COX-2 inhibitor was possibly, at least in part, mediated by HIF-1α.
Objective To observe the influence of the expression of CD18 on the neutrophile and the leukocyte adhesion to retinal vascular endothelium by hypoxia-inducible factor-1 alpha (HIF-1alpha;) in early diabetic retinopathy rats. Methods Male Sprague-Dawley rats received intraperitoneal injection of streptozotocin to induce diabetes model. 18 diabetic rats were divided into 3 groups randomly after 2 months of diabetes induction, including diabetic group (group B), HIF-1alpha; anti-sense oligonucleotides (ASODN) injection group (group C) and HIF-1alpha; sense oligonucleotides (SODN) injection group (group D), the age and weigh matched health rats were chosen as control group (group A), with 6 rats in each group. Then group A and B rats received 5% glucose solution caudalis veins injection, group C and group D rats received HIF-1alpha; ASODN and HIF-1alpha; SODN caudalis veins injection, respectively(025 mg/kg).The level of CD18 on the neutrophil isolated from the peripheral blood was measured by flow cytometry. Retinal leukostasis was quantified with acridine orange leukocyte fluorography. Results The percentage of CD18 positive neutrophil cell was(44.93plusmn;3.60)% in group B,(18.66plusmn;1.52)% in group A,(31.66plusmn;4.72)% in group C,(51.00plusmn;5.66)% in group D. Compared with each other groups,the differences are statistically significant (F=42.46, Plt;0.001). The number of positive staining cells of retinal leukocyte was (46.16plusmn;10.68)in group A,(133.83plusmn;20.43)in group B,(99.83plusmn;9.28)in group C,(121.33plusmn;10.23) in group C. Compared group B with group C,the number of positive staining cells raised about 2.89 times;compared group B with group C and D,the differences are statistically significant (P=0.12,95% confidence interval -3.69~28.69). Conclusions In vivo, HIF-1alpha; can decreased the expression of CD18 on neutrophils from diabetic ratsprime; peripheral blood and the collection of retinal leukostasis in the diabetic animals. HIF-1alpha; may serve as a therapeutic target for the treatment and/or prevention of early diabetic retinopathy. (Chin J Ocul Fundus Dis,2008,24:268-271)
ObjectiveTo investigate the expression and correlation of hypoxia inducible factor 1α (HIF-1α) and autophagy related molecules (Beclin1 and LC3B) in rat nucleus pulposus cells under hypoxia in vitro.MethodsThe nucleus pulposus cells were extracted from the nucleus pulposus of healthy adult Sprague Dawley rats and passaged. The 3rd generation cells were identified by HE staining and collagenase type Ⅱ immunofluorescence staining and randomly divided into 4 groups. The cells in group A were cultured for 8 hours under normal oxygen condition (37℃, 5%CO2, 20%O2); the cells in group B were cultured for 8 hours under hypoxia condition (37℃, 5%CO2, 1%O2); the cells in group C were transfected with HIF-1α-small interfering RNA and cultured for 8 hours under hypoxia condition; and the cells in group D were cultured with autophagy inhibitor 3-MA for 8 hours under hypoxia condition. Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to detect the expressions of HIF-1α and autophagy related molecules (Beclin1 and LC3B) in all groups.ResultsHE staining of the 3rd generation nucleus pulposus cells showed that the cytoplasm was light pink and the nucleus was blue black, and the collagenase type Ⅱ immunofluorescence staining was positive. Western blot and qRT-PCR results showed that the relative expressions of HIF-1α, Beclin1, and LC3B proteins and genes in group B were significantly higher than those in group A (P<0.05); the relative expressions of HIF-1α, Beclin1, and LC3B proteins and genes in group C were significantly lower than those in group B (P<0.05). There was no significant difference in the relative expression of HIF-1α protein and gene between groups B and D (P>0.05); while the relative expressions of Beclin1 and LC3B proteins and genes in group D were significant lower than those in group B (P<0.05).ConclusionHypoxia can induce the expressions of HIF-1α and autophagy related molecules (Beclin1 and LC3B) in rat nucleus pulposus cells, and HIF-1α in rat nucleus pulposus cells under hypoxia is related to the expression of autophagy related molecules, that is, down-regulation of HIF-1α can significantly reduce the expression of autophagy related molecules, while the down-regulation of autophagy levels under hypoxia has no or little effect on the expression of HIF-1α.
Objective To observe the effects of cobalt chloride (CoCl2)-simulated hypoxia on VEGF and TGF-β1 expression and to provide theoretical basis for deci phering the molecular mechanism of cl inical distraction osteogenesis. Methods The mandibular osteoblasts were obtained from newborn Wistar rats within 24 hours and cultured and purified through modified enzymatic digestion. The morphological and histological changes of cells were evaluated by the HE staining,the histochemical staining for ALP, the collagen I immunohistochemistry staining and the calcified nodules staining, and the growth curves were drawn. The best cells of the 3rd-passage rats were treated with CoCl2, and then immunofluorescence was used to detect the expressions of VEGF and TGF-β1 at 0, 3, 6, 9, 12 and 24 hours after culture. Results The HE staining demonstrated that the cellular forms were diverse, triangular, polygonal, circular and scaly and so on. The prominence varied in length and extended outwards. The nucleus was clearly discernible. The cytoplasma was rich and pink, with the nucleus royal purple. Sometimes 2 cell nuclei were seen. At the crowded place, cellular form was not clear, the dividing l ine was indistinct, and just the great-circle nuclear cells could be seen. The ALP immunohistochemistry staining demonstrated that the cell butcher nature appeared black pellets, the cell nucleus outl ine was unclear, and at the cell compact district, massive mascul ine cells could be seen clearly. The collagen I immunohistochemistry staining demonstrated that mascul ine cells were seen evenly, cytoplasma appeared yellowish brown especially around the nucleus. However, yellowish brown pellets were not seen in negative cells. The osteoblast calcium tubercle staining demonstrated that the cells gathered in the opaque region with the shape of tubercle after15 days of culture. After al izarin red staining, the reddish orange pigmentation appeared. At various time points, weak VEGF fluorescence was seen in the cells in the control group under the laser confocal microscope. As the hypoxia time prolonged, VEGF fluorescence of cells in the experimental group intensified, and reached the peak 9 hours after peration, and then dropped to the normal level. At various time points, TGF-β1 fluorescence was found in both groups under the laser confocal microscope, and fluorescence intensity in the control group was sl ightly ber than that in the VEGF control group. In the experimental group, TGF-β1 expression had short-term increase 3 hours after hypoxia, and reduced gradually with the prolonging of hypoxia time. Conclusion The method of culturing osteoblast from Wistar rats mandibular is practicable. The cells can be used for further studies. Moderate hypoxia can affect bone synthesis and turnover in distraction osteogenesis and up-regulate the expressions of VEGF and TGF-β1.
ObjectiveTo investigate the correlations among the cadual homeobox gene 2 (CDX2), hypoxia inducible factor-1α (HIF-1α) protein expressions, and tumor budding in the colorectal cancer (CRC). MethodsIn this study, 63 CRC specimens surgically removed in the First Affiliated Hospital of Xi’an Jiaotong University from January 2012 to September 2015 were collected. The CDX2 and HIF-1α protein expressions were detected by immunohistochemical staining streptavidin-biotin peroxidase two-step method. The staining and the grade of tumor budding were observed under an optical microscope, and the correlation was analyzed using Spearman test. ResultsThe positive expressions of CDX2 and HIF-1α proteins in the CRC tissues were 35 (55.6%) and 47 (74.6%) cases, respectively, which was a negative correlation in the CRC (rs=–0.302, P=0.017). The positive expressions of CDX2 and HIF-1α proteins in the tumor budding of colorectal cancer were 21 (51.2%) and 26 (63.4%) cases, respectively, which was also a negative correlation in the tumor budding of CRC (rs=–0.336, P=0.031), but there was no statistic correlation between the grade of tumor budding and CDX2 or HIF-1α positive protein expression in the CRC (rs=0.113, P=0.370; rs=–0.026, P=0.838). ConclusionsThe positive expression between CDX2 and HIF-1α has a negative correlation in the same CRC specimen and which has a negative correlation in tumor budding. There is no statistic correlation between grade of tumor budding and CDX2 or HIF-1α protein expression in the CRC. Hypoxia environment may be involved in the downregulation of CDX2 level during the malignant progression of CRC.