west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "组织工程" 623 results
  • In vitro experience with tissue engineered heart valve leaflets

    Objective To investigate the possibility of creation of tissue engineered heart valve leaflets in vitro . Methods Aorta were obtained from 9 hybrid young pigs. The endothelial cell, fibroblast and smooth muscle cells were isolated and cultured to get enough cell. The expanded fibroblast, smooth muscle cell,and endothelial cells were seeded on the polymers sequentially. The cell polymer constructs were sent for scanning electron microscopy(SEM) examination after cultured for 7, 14, and 28 days. Histological examination were performed after the cell polymer constructs cultured for 28 days. Results SEM showed that the number of cells on the polymers increased as the culture time prolonged, with the formation of matrix. After 28 days, there were a great number of cells and large amount of matrix on the scaffolds. The confluent cell had covered a large area of the polymers. Hematoxylin and eosin(HE) stain showed large amount of cells attached to the polymers. Conclusion With the viability of the cultured cellular scaffolds,it is possible to create tissue engineered heart valve leaflets in vitro.

    Release date:2016-08-30 06:27 Export PDF Favorites Scan
  • FABRICATION OF TISSUE ENGINEERED SKIN EQUIVALENT

    OBJECTIVE: To fabricate artificial human skin with the tissue engineering methods. METHODS: The artificial epidermis and dermis were fabricated based on the successful achievements of culturing human keratinocytes(Kc) and fibroblasts (Fb) as well as fabrication of collagen lattice. It included: 1. Culture of epidermal keratinocytes and dermal fibroblasts: Kc isolated from adult foreskin by digestion of trypsin-dispase. Followed by comparison from aspects of proliferation, differentiation of the Kc, overgrowth of Fb and cost-benefits. 2. Fabrication of extracellular matrix sponge: collagen was extracted from skin by limited pepsin digestion, purified with primary and step salt fraction, and identified by SDS-PAGE. The matrix lattice was fabricated by freeze-dryer and cross-linked with glutaraldehyde, in which the collagen appeared white, fibrous, connected and formed pores with average dimension of 180 to 260 microns. 3. Fabrication artificial human skin: The artificial skin was fabricated by plating subcultured Kc and Fb separately into the lattice with certain cell density, cultured for one week or so under culture medium, then changed to air-liquid interface, and cultured for intervals. RESULTS: The artificial skin was composed of dermis and epidermis under light microscope. Epidermis of the skin consisted of Kc at various proliferation and differentiation stages, which proliferated and differentiated into basal cell layer, prickle cell layer, granular layer, and cornified layer. Conifilament not only increased in number, but also gathered into bundles. Keratohyalin granules at different development stages increased and became typical. The kinetic process of biochemistry of the skin was coincide with the changes on morphology. CONCLUSION: Tissue engineered skin equivalent has potential prospects in application of repairing skin defect with advantages of safe, effective and practical alternatives.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • The Method of Tissue Engineering in Spinal Cord Injury Scaffold Forming Technology’s Exploration

    组织工程的提出、建立和发展,为最终实现脊髓损伤的修复和真正意义上的结构、形态与功能重建开辟了新的途径。支架的生物活性、三维结构和表面微观结构,材料的降解性等众多因素都对细胞增殖,分化和组织形成有明显影响。组织工程的发展也将改变传统的医学模式,使得再生医学得以进一步发展,并最终用于疾病的治疗。

    Release date:2016-09-08 09:56 Export PDF Favorites Scan
  • MECHANISM OF THE FIBROBLAST INDUCING THE VASCULARIZATION OF DERMAL SUBSTITUTE

    Objective To investigate the possible mechanism of the fibroblasts inducing the vascularization of dermal substitute. Methods Fibroblasts were seeded on the surface of acellular dermal matrix and cultivated in vitro to construct the living dermal substitute. The release of interleukin 8 (IL 8) and transfonming growth factor β 1(TGF β 1) in culture supernatants were assayed by enzyme linked immunosorbent assay, the mRNA expression of acid fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) were detected by RT-PCR. Then, the living substtute was sutured to fullth ickness excised wound on BALBouml;C m ice, and the fate of fibroblast w as observed by using in situ hybridizat ion. Results Fibroblasts cultured on acellular dermalmat rix p ro liferated and reached a single2layer confluence. Fibroblasts could secret IL 28 (192. 3±15. 9) pgouml;m l and TGF-B1 (1. 105±0. 051) pgouml;m l. There w as the mRNA exparession of aFGF and bFGF. Fibroblasts still survived and proliferated 3 weeks after graft ing. Conclusion Pept ides secreted by fibroblasts and its survival after graft ing may be relat ive to the vascularizat ion of the dermal subst itute.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH HOMOGRAFT OF MARROW MESENCHYMAL STEM CELLS SEEDED ONTO POLY-L-LACTIC ACID/GELATIN

    Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • THE EFFECTS OF DEXAMETHASONE ON BIOLOGICAL CHARACTERISTICS OF BONE MARROW STROMAL CELLS

    OBJECTIVE: To investigate the effects of dexamethasone on the proliferation and differentiation of bone marrow stromal cells(MSC). METHODS: MSC were isolated and cultured in vitro. After treatment with different concentrations of dexamethasone (0, 10-10, 10-9, 10-8, 10-7 and 10-6 mol/L), the proliferation and alkaline phosphatase (ALP) activity of MSC were measured to evaluate the effect of dexamethasone on the biological characteristics of MSC. RESULTS: Dexamethasone inhibited cell proliferation. With the increase of concentration of dexamethasone, the effect was enhanced, which was more significant when the concentration of dexamethasone was over 10-8 mol/L. At the same time, dexamethasone promoted the activity of ALP. This effect was enhanced with the increase of concentration of dexamethasone, but the alteration was small when the concentration of dexamethasone was over 10-8 mol/L. The effects increased with the time. The activity of ALP was enhanced 2 to 4 times with the dexamethasone for 6 days. CONCLUSION: Dexamethasone inhabit the proliferation of MSC, while induce them to differentiate into osteoblasts. The appropriate concentration of dexamethasone was 10-8 mol/L.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON GRAFT OF AUTOGENEIC ILIAC BONE AND TISSUE ENGINEERED BONE

    OBJECTIVE: To compare the clinical results of repairing bone defect of limbs with tissue engineering technique and with autogeneic iliac bone graft. METHODS: From July 1999 to September 2001, 52 cases of bone fracture were randomly divided into two groups (group A and B). Open reduction and internal fixation were performed in all cases as routine operation technique. Autogeneic iliac bone was implanted in group A, while tissue engineered bone was implanted in group B. Routine postoperative treatment in orthopedic surgery was taken. The operation time, bleeding volume, wound healing and drainage volume were compared. The bone union was observed by the X-ray 1, 2, 3, and 5 months after operation. RESULTS: The sex, age and disease type had no obvious difference between groups A and B. all the wounds healed with first intention. The swelling degree of wound and drainage volume had no obvious difference. The operation time in group A was longer than that in group B (25 minutes on average) and bleeding volume in group A was larger than that in group B (150 ml on average). Bone union completed within 3 to 7 months in both groups. But there were 2 cases of delayed union in group A and 1 case in group B. CONCLUSION: Repair of bone defect with tissue engineered bone has as good clinical results as that with autogeneic iliac bone graft. In aspect of operation time and bleeding volume, tissue engineered bone graft is superior to autogeneic iliac bone.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • PRODUCTION AND APPLICATION OF BIO-DERIVED SCAFFOLD IN PERIPHERAL NERVE

    Objective To comment on the recent advances of production and application of the bio-derived scaffold in the tissue engineered peripheral nerve. Methods The recent articles were systematically analyzed, and then the production methods of the bio-derived scaffold and its application to the tissue engineered peripheral nerve were evaluated and prospected. Results B iological tissues were processed by some methods to produce the bio-derived materials. These mat erials could maintain the structure and components of the tissues. Moreover, the immunogenicity of these materials was reduced. Conclusion Application of the bio-derived materials is a trend in the fabricating scaffold of the tissue en gineered peripheral nerve.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • ADVANCES IN RESEARCH AND DEVELOPMENT OF TISSUE ENGINEERING

    OBJECTIVE: From the point of view of material science, the methods of tissue repair and defect reconstruct were discussed, including mesenchymal stem cells (MSCs), growth factors, gene therapy and tissue engineered tissue. METHODS: The advances in tissue engineering technologies were introduced based on the recent literature. RESULTS: Tissue engineering should solve the design and preparation of molecular scaffold, tissue vascularization and dynamic culture of cell on the scaffolds in vitro. CONCLUSION: Biomaterials play an important role in the tissue engineering. They can be used as the matrices of MSCs, the delivery carrier of growth factor, the culture scaffold of cell in bioreactors and delivery carrier of gene encoding growth factors.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON PROTECTIVE EFFECTS OF SCHWANN CELL COOPERATION WITH ECM GEL TO NEURONS IN RAT DORSAL ROOT GANGLION

    OBJECTIVE: To research the protective effect of Schwann cell and extracellular matrix (ECM) gel on neurons in dorsal root ganglion. METHODS: 1. Schwann cells were seeded into 30% ECM at 1 x 10(8)/ml and then implanted into PLA hollow fiber conduits to repair 10 mm length defects of rat sciatic nerve, and histological observation was taken at 8 and 12 weeks after operation. 2. To observe the survival of Schwann cells, Schwann cells labeled BrdU were seeded into 30% ECM at 1 x 10(8)/ml and then implanted into PLA hollow fiber conduits to repair 10 mm length defects of rat sciatic nerve. Histological observation and immunohistochemical method stained with BrdU were done at 3 and 6 weeks after operation. RESULTS: 1. When seeded into ECM gel and transplanted into rats, most of the Schwann cells survived to 3 weeks and a part of them survived up to 6 weeks. 2. The survival neuron ratios of Schwann cells with ECM gel group and ECM gel group were 83.5% and 81.3% respectively, and significantly higher than that of saline group (72.9%, P lt; 0.05). CONCLUSION: When seeded into ECM gel and transplanted into rats, most of the Schwann cells survive and protect 83.5% neurons in dorsal root ganglion from retrograde death.

    Release date: Export PDF Favorites Scan
63 pages Previous 1 2 3 ... 63 Next

Format

Content