OBJECTIVE: To explore a new method of preparing the composite of DL-polylactic acid (PDLLA), hydroxyapatite(HA), decalcium bone matrix (DBM), and to observe the degradation characteristics of PDLLA/HA/DBM in vitro. METHODS: An emulsion blend method was developed to prepare the composite of PDLLA/HA/DBM based on the weight rate of PDLLA:HA:DBM = 1.5-2:1-1.5:1. The characteristics of the particles was observed by scanning electron microscope. In vitro, PDLLA/HA/DBM and PDLLA were put into PBS(pH7.4) respectively; the pH value, weight and biomechanics of them were determined during the degradation. RESULTS: Without heating, the emulsion blend method could be developed to prepare PDLLA/HA/DBM. Scanning electron microscope showed that the gap diameter in the compound material was 100 to 400 microns, and the porosity was 71.3%; During degradation, the pH value of PDLLA decreased little within 2 weeks, then decreased obviously and decreased to 4.0 at the end of the 4th week; while the pH value of PDLLA/HA/DBM kept quite steady and was 6.4 at the end of the 12th week. The weight of PDLLA decreased little within 4 weeks, then decreased obviously and remained 50% of its prime weight at the end of the 12th week; while the weight of PDLLA/HA/DBM decreased little within 5 weeks, then decreased obviously and remained 60% of the prime at the end of the 12th week. The prime biomechanical strength was 1.33 MPa in PDLLA and 1.71 MPa in PDLLA/HA/DBM. There was significant difference between them (P lt; 0.05). The strength of PDLLA decreased little within 3 weeks, then decrease obviously and was 0.11 MPa at the end of the 12th week; the strength of PDLLA/HA/DBM decreased little within 4 weeks, then decrease obviously and was 0.21 MPa at the end of the 12th week. CONCLUSION: The emulsion blend method is a new method to prepare bone repair materials. As a new bone repair material, PDLLA/HA/DBM is suitable for bone tissue engineering for its good characteristics of porosity and degeneration.
Objective To study the vascularization of the compositeof bio-derived bone and marrow stromal stem cells(MSCs) in repairing goat tibial shaft defect.Methods Bio-derived bone was processed as scaffold material. MSCs were harvested and cultured in vitro. The multiplied and induced cells were seeded onto the scaffold to construct tissue engineered bone. A 20 mm segmental bone defect inlength was made in the middle of the tibia shaft in 20 mature goats and fixed with plate. The right tibia defect was repaired by tissue engineered bone (experimental side), and the left one was repaired by scaffold material (control side).The vascularization and osteogenesis of the implants were evaluated by transparent thick slide, image analysis of the vessels, and histology with Chinese ink perfusion 2, 4, 6, and 8 weeks after operation.Results More new vessels were found in control side than in experimental side 2 and 4 weeks after implantation (Plt;0.05). After 8 weeks, there was no significant difference in number of vessels between two sides(Pgt;0.05), and the implants were vascularized completely. New bone tissue was formed gradually as the time and the scaffold material degraded quickly after 6 and 8 weeks in the experimental side. However, no new bone tissue was formed andthe scaffold degraded slowly in control side 8 weeks after operation.Conclusion Bio-derived bone has good quality of vascularization. The ability of tissue-engineered bone to repair bone defect is better than that of bio-derived bone alone.
Objective To investigate bone regeneration of the cell-biomaterial complex using strategies of tissue engineering based on cells.Methods Hydroxyapatite/collagen (HAC) sandwich composite was produced to mimic the natural extracellular matrix of bone, with type Ⅰ collagen servingas a template for apatite formation. A three-dimensional ploy-porous scaffoldwas developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique (TIPS). The rabbit periosteal cells were treated with 500 ng/ml of recombinant human bone morphogenetic protein 2(rhBMP-2), followed by seeded into pre-wet HAC-PLA scaffolds. Eighteen 3-month nude mice were implanted subcutaneously cell suspension (groupA, n=6), simple HAC-PLA scaffold (group B, n=6) and cell-biomaterial complex(group C, n=6) respectively.Results Using type Icollagen to template mineralization of calcium and phosphate in solution, we get HAC sandwich composite, mimicking the natural bone both in compositionand microstructure. The three dimensional HAC-PLA scaffold synthesized by TIPShad high porosity up to 90%, with pore size ranging from 50 μm to 300 μm. SEMexamination proved that the scaffold supported the adhesion and proliferation of the periosteal cells. Histology results showed new bone formation 8 weeks after implantation in group C. The surface of group A was smooth without neoplasma. Fibrous tissueinvasion occured in group B and no bone and cartilage formations were observed.Conclusion The constructed tissue engineering bone has emerged as another promising alternative for bone repair.
Objective To explore the histological changes of bio-derived bone prepared by different methods after implantation, and to provide the scaffold material from xenogeneic animal for tissue engineering. Methods Theextremities of porcine femur were cut into 0.5 cm×0.5 cm×0.5 cm. Then they were divided into 5 groups according to different preparation methods: group A was fresh bone just repeatedly rinsed by saline; group B was degreased; group C was degreased and decalcificated; group D was degreased, acellular and decalcificated; group E wasdegreased and acellular. All the materials were implantated into femoral muscle pouch of rabbit after 25 kGy irradiation sterilization. The cell counting ofinflammatory cells and osteoclasts, HE and Masson staining, material degradation, collagen and new bone formation were observed at 2, 6, and 12 weeks postoperatively. Results The residue level of trace element in biomaterials prepared by different methods is in line with the standards. All the animals survived well. There were no tissue necrosis, fluid accumulation or inflammation at all implantation sites at each time point. The inflammatory cells counting was most in group A, and there was significant difference compared with other groups(P<0.05). There was no significant difference in osteoclasts counting among all groups. For the index of HE and Masson staining, collagen and new bone formation, groups C and D were best, group E was better, and groups A and B were worse. Conclusion The degreased, acellular and decalcificated porcine bone is better in degradation,bone formation, and lower inflammatory reaction, it can be used better scaffold material for tissue engineered bone.
Objective To investigate the protocols of combined culture of human placenta-derived mesenchymal stem cells (HPMSCs) and human umbilical vein endothelial cells (HUVECs) from the same and different individuals on collagen material, to provide the. Methods Under voluntary contributions, HPMSCs were isolated and purified from human full-term placenta using collagenase IV digestion and lymphocyte separation medium, and confirmed by morphology methods and flow cytometry, and then passage 2 cells were cultured under condition of osteogenic induction. HUVECs were isolated from fresh human umbilical vein by collagenase I digestion and subcultured to purification, and cells were confirmed by immunocytochemical staining of von Willebrand factor (vWF). There were 2 groups for experiment. Passage 3 osteoblastic induced HPMSCs were co-cultured with HUVECs (1 ∶ 1) from different individuals in group A and with HUVECs from the same individual in group B on collagen hydrogel. Confocal laser scanning microscope was used to observe the cellular behavior of the cell-collagen composites at 1, 3, 5, and 7 days after culturing. Results Flow cytometry showed that HPMSCs were bly positive for CD90 and CD29, but negative for CD31, CD45, and CD34. After induction, alizarin red, alkaline phosphatase, and collagenase I staining were positive. HUVECs displayed cobble-stone morphology and stained positively for endothelial cell marker vWF. The immunofluorescent staining of CD31 showed that HUVECs in the cell-collagen composite of group B had richer layers, adhered and extended faster and better in three-dimension space than that of group A. At 7 days, the class-like microvessel lengths and the network point numbers were (6.68 ± 0.35) mm/mm2 and (17.10 ± 1.10)/mm2 in group A, and were (8.11 ± 0.62) mm/mm2 and (21.30 ± 1.41)/mm2 in group B, showing significant differences between the 2 groups (t=0.894, P=0.000; t=0.732, P=0.000). Conclusion Composite implant HPMSCs and HUVECs from the same individual on collagen hydrogel is better than HPMSCs and HUVECs from different individuals in integrity and continuity of the network and angiogenesis.
Objective To study the culture and purification of the fetal mouse liver mesenchymal stem cells(MSCs) in vitro and to investigate their differentiation potential and the composite ability with true bone ceramic(TBC). Methods The single cell suspension of MSCs was primarily cultured and passaged, which was prepared from the fetal mouse liver; the flow cytometry was applied to detectCD29, CD34, CD44 and CD45. The osteogenic differentiation was induced in chemical inducing system; the osteogenic induction potency was tested. The purified fetal mouse liver MSCs were compounded with TBC covered with collagen type Ⅰ in vitro and the cell attachment and proliferation to the TBC were observed. Results The primary MSCs of fetal mouse liver were easy to culture in vitro. They proliferated well and were easy to subcultured. The proliferation ability of primary and passaged MSCs was similar. Flow cytometric analysis showed the positive results for CD29, CD44 and the negative results for CD34, CD45. After 7 days of induction, the MSCs expressed collagen type I and alkaline phosphatase(ALP) highly. After 14 days of induction, the fixed quantity of ALP increased significantly. After 28 days of induction, calcium accumulation was observed by Von Kossa’s staining. Many liver MSCs attached to the surface of TBC. Conclusion The MSCs of the fetalmouse liver can be obtained, subcultured and purified easily. After culturing in chemical inducing system, the MSCs of fetal mouse liver can be successfully induced to osteoblast-like cells, attach to the surface of TBC and proliferate well.
【Abstract】 Objective To produce a new bone tissue engineered carrier through combination of xenograft bone (X)and sodium alginate (A) and to investigate the biological character of the cells in the carrier and the abil ity of bone-forming in vivo, so as to provide experimental evidence for a more effective carrier. Methods BMSCs were extracted from 2-week-old New Zealand rabbits and the BMSCs were induced by rhBMP-2 (1 × 10-8mol/L). The second generation of the induced BMSCs was combined with 1% (V/W) A by final concentration of 1 × 105/mL. After 4-day culture, cells in gel were investigated by HE staining. The second generation of the induced BMSCs was divided into the DMEM gel group and the DMEM containing 1% A group. They were seeded into 48 well-cultivated cell clusters by final concentration of 1 × 105/mL. Seven days later, the BMP-2 expressions of BMSCs in A and in commonly-cultivated cells were compared. The second generation of the induced BMSCs was mixed with 2% A DMEM at a final concentration of 1 × 1010/mL. Then it was compounded with the no antigen X under negativepressure. After 4 days, cells growth was observed under SEM. Twenty-four nude mice were randomly divided into 2 group s (n=12).The compound of BMSCs-A-X (experimental group) and BMSCs-X (control group) with BMSCs whose final concentrat ion was 1 × 1010/mL was implanted in muscles of nude mice. Bone formation of the compound was histologically evaluated by Image Analysis System 2 and 4 weeks after the operation, respectively. Results Cells suspended in A and grew plump. Cell division and nuclear fission were found. Under the microscope, normal prol iferation, many forming processes, larger nucleus, clear nucleolus and more nuclear fission could be seen. BMP-2 expression in the DMEM gel group was 44.10% ± 3.02% and in the DMEM containing 1% A group was 42.40% ± 4.83%. There was no statistically significant difference between the two groups (P gt; 0.05). A was compounded evenly in the micropore of X and cells suspended in A 3-dimensionally with matrix secretion. At 2 weeks after the implantation, according to Image Analysis System, the compound of BMSCs-A-X was 5.26% ± 0.24% of the totalarea and the cartilage-l ike tissue was 7.31% ± 0.32% in the experimental group; the compound of BMSCs-X was 2.16% ± 0.22% of the total area and the cartilage-l ike tissue was 2.31% ± 0.21% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). At 4 weeks after the operation, the compound of BMSCs-A-X was 7.26% ± 0.26% of the total area and the cartilage-l ike tissue was 9.31% ± 0.31% in the experimental group; the compound of BMSCs-X was 2.26% ± 0.28% of the total area and the cartilage-l ike tissue was 3.31% ± 0.26% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). Conclusion The new carrier compounding A and no antigen X conforms to the superstructural principle of tissue engineering, with maximum cells load. BMSCs behave well in the compound carrier with efficient bone formation in vivo.
Objective To investigate bio characteristics of bone stromal cells (MSC) in different concentrations of alginate combined with xenograft. Methods The configuration and secretion of MSC in different concentrations of alginate combined with xenograft were observed by scanning electron microscope and inverted microscope. Results When the concentration of alginate was 0.25% or 1%, alginate was equally combined in xenograft, 4% and 8% only on the surface of xenograft. After cultured for 4 days, alginate of 0.25# came off from xenograft. But alginate of 1% was equally combined in xenograft with cell secreting well in alginate. The growth of cells in alginate of 4% was restricted and no cell was seen in alginate of 8%. Conclusion Alginate of 1% is suitable fro constructing carrier of tissue engineering bone.
Objective To investigate the feasibility of repairing goat tibia defect with marrow stromal cells (MSCs).Methods MSCs were cocultured with the bio-derived bone in vitro, and the 20 mm tibia defectswere made and fixed with plate in 35 goats, and they were divided into the experimental group, control group and blank group. The defects on the right side were filled with tissue engineering bone as the experimental group, the defects onthe left side with bio-derived bone as the control group in 33 goats, and the defect on the both sides were not filled with any materials as the blank group in 2 goats. Threpair capability was assessed physically, histopathologically and biomechanically at 2, 4, 6, 8, 12,16 and 24 weeks after operation in 3 groups.Results By physical, histopathological and biomechanical examinations, the bio-derived bone was partially absorbed in the experimental group and was rarely absorbed in the control group in the 4th week; the defects were partially repaired in the experimental group, and in the control group, few new bones were observed in the two ends of the implants, in which there was fibrous tissue. The effects of biomechanics had no statistically significant difference between the experimental group and the control group(P>0.05) in the 8th week; the defects were perfectly repaired in the experimental group and the effects of biomechanics had statistically significant difference between two groups (P<0.05) in the 12th weeks. The defects were not repaired in the 24th week in the blank group.Conclusion The tissue engineering bone can efficiently repair bone defect, and itsrepair capability is better than that of bio-derived bone alone both in quantity and in quality of bone formation.
Objective To investigate the effect of repairing bone defect with tissue engineered bone seeded with the autologous red bone marrow (ARBM) and wrapped by the pedicled fascial flap and provide experimental foundation for cl inicalappl ication. Methods Thirty-two New Zealand white rabbits (male and/or female) aged 4-5 months old and weighing2.0-2.5 kg were used to make the experimental model of bilateral 2 cm defect of the long bone and the periosteum in the radius. The tissue engineered bone was prepared by seeding the ARBM obtained from the rabbits on the osteoinductive absorbing material containing BMP. The left side of the experimental model underwent the implantation of autologous tissue engineered bone serving as the control group (group A). While the right side was designed as the experimental group (group B), one 5 cm × 3 cm fascial flap pedicled on the nameless blood vessel along with its capillary network adjacent to the bone defect was prepared using microsurgical technology, and the autologous tissue engineered bone wrapped by the fascial flap was used to fill the bone defect. At 4, 8, 12, and 16 weeks after operation, X-ray exam, absorbance (A) value test, gross morphology and histology observation, morphology quantitative analysis of bone in the reparative area, vascular image analysis on the boundary area were conducted. Results X-ray films, gross morphology observation, and histology observation: group B was superior to group A in terms of the growth of blood vessel into the implant, the quantity and the speed of the bone trabecula and the cartilage tissue formation, the development of mature bone structure, the remolding of shaft structure, the reopen of marrow cavity, and the absorbance and degradation of the implant. A value: there was significant difference between two groups 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those three time points in groups A and B (P lt; 0.05). For the ratio of neonatal trabecula area to the total reparative area, there were significant differences between two groups 4, 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those four time points in group B (P lt; 0.05).For the vascular regenerative area in per unit area of the junctional zone, group B was superior to group A 4, 8, 12, and 16 weeks after operation (P lt; 0.05). Conclusion Tissue engineered bone, seeded with the ARBM and wrapped by the pedicled fascial flap, has a sound reparative effect on bone defect due to its dual role of constructing vascularization and inducing membrane guided tissue regeneration.