ObjectiveTo explore the morbidity rate and risk factors of proliferative diabetic retinopathy (PDR) in type 2 diabetes.MethodsThe clinical data of patients, with PDR in 2739 consecutive cases of type 2 diabetes diagnosed in this hospital from 1994 to 2001 were analyed retospectively. The diagnosis of diabetic retinopathy (DR) was confirmed by ophthalmoscopy and fundus fluorescein angiography (FFA). Blood pressure, fasting and postprandial blood sugar, glycosylated haemoglobin(HbA1c), total serum cholesterol, triglyceride, creatinine, and albumin excretion rate were measured.ResultsThe morbidity rate of type 2 DR was 27.8%(761/2739), and the morbidity rate of PDR was 4.2%(114/2 739) occupying 15% of the patients with DR. The duration, fasting blood sugar, glycosylated haemoglobin, blood pressure and albumin excretion rate were much higher than those in the control(P<0.01, glycosylated haemoglobin P<0.05). The independent risk factors of PDR were duration of the disease (r=0.15, P<0.01) and albumin excretion rate (r=0.08, P<0.05). The risk factors of PDR were albumin excretion rate and fasting blood sugar (r=0.13, P<0.05) in patients with longer duration(≥5 years). The morbidity rate of PDR was 2.3%, 5.9% and 12.4% in patients with duration less than 5 years, 5 to 10 years and over 10 years groups, respectively. The morbidity of PDR of the patients in normal albuminuria, microalbuminuria and overt albuminuria group was 2.1%、5.3% and 18.8% respectively.ConclusionsType 2 diabetes accompanied with PDR is relative to the duration of the diabetes, albumin excretion rate, fasting blood sugar, blood pressure, and glycosylated haemoglobin, in which the duration of the disease, albuminuria and fasting blood sugar are the risk factors of occurance of PDR. (Chin J Ocul Fundus Dis, 2003,19:338-340)
The prevalence of diabetes mellitus in adults of China has reached 12.8%. Diabetic retinopathy (DR) accounts for approximately 1/4-1/3 of the diabetic population. Several millions of people are estimated suffering the advanced stage of DR, including severe non-proliferative DR (NPDR), proliferative DR (PDR) and diabetic macular edema (DME), which seriously threat to the patients’ vision. On the basis of systematic prevention and control of diabetes and its complications, prevention of the moderate and high-risk NPDR from progressing to the advanced stage is the final efforts to avoid diabetic blindness. The implementation of the DR severity scale is helpful to assess the severity, risk factors for its progression, treatment efficacy and prognosis. In the eyes with vision-threatening DR, early application of biotherapy of anti-vascular endothelial growth factor can improve DR with regression of retinal neovascularization, but whether it is possible to induce capillary re-canalization in the non-perfusion area needs more investigation. Laser photocoagulation remains the mainstay treatment for non-center-involved DME and PDR.
ObjectiveTo observe and analyze the correlation between time within target glucose range (TIR) and hemoglobin A1c (HbA1c) and the risk of diabetic retinopathy (DR). MethodsA retrospective clinical study. From March 2020 to August 2021, 91 patients with type 2 diabetes mellitus (T2DM) who were hospitalized in Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Weifang Medical University, were included in the study. All patients underwent Oburg's no-dilatation ultra-wide-angle laser scan ophthalmoscopy, HbA1c and continuous glucose monitoring (CGM) examinations. According to the examination results and combined with the clinical diagnostic criteria of DR, the patients were divided into non-DR (NDR) group and DR group, with 50 and 41 cases respectively. The retrospective CGM system was used to monitor the subcutaneous interstitial fluid glucose for 7 to 14 consecutive days, and the TIR was calculated. Binary logistic regression was used to analyze the correlation between TIR, HbAlc and DR in patients with T2DM0. At the same time, a new indicator was generated, the predicted probability value (PRE_1), which was generated to represent the combined indicator of TIR and HbA1c in predicting the occurrence of DR. The receiver operating characteristic curve (ROC curve) was used to analyze the value of TIR, HbAlc and PRE_1 in predicting the occurrence of DR. ResultsThe TIR of patients in the NDR group and DR group were (81.58±15.51)% and (67.27±22.09)%, respectively, and HbA1c were (8.03±2.16)% and (9.01±2.01)%, respectively. The differences in TIR and HbA1c between the two groups of patients were statistically significant (t=3.501,-2.208; P=0.001, 0.030). The results of binary logistic regression analysis showed that TIR, HbA1c and DR were significantly correlated (odds ratio=0.960, 1.254; P=0.002, 0.036). ROC curve analysis results showed that the area under the ROC curve (AUC) of TIR, HbA1c and PRE_1 predicting the risk of DR were 0.704, 0.668, and 0.707, respectively [95% confidence interval (CI) 0.597-0.812, P=0.001; 95%CI 0.558-0.778, P=0.006; 95%CI 0.602-0.798, P=0.001]. There was no statistically significant difference between TIR, HbA1c and PRE_1 predicting the AUC of DR risk (P>0.05). The linear equation between HbAlc and TIR was HbAlc (%) = 11.37-0.04×TIR (%). ConclusionsTIR and HbA1c are both related to DR and can predict the risk of DR. The combined use of the two does not improve the predictive value of DR. There is a linear correlation between TIR and HbAlc.
Objective To observe the effect of celecoxib on the expression vascular endothelial growth factors (VEGF) in diabetic rats. Methods Thirty-six wistar rats were used to establish the diabetic models by intraperitoneal injection with streptozotocin. The diabetic rats were divided into 2 groups: diabetic group (n=18) and celecoxib group (n=18). Celecoxib (50 mg/kg) was administered orally to the rats in celecoxib group and the physiological saline with the same volume was given orally to the rats in diabetic group. Eighteen else rats were in normal control group. All of the rats were executed 3 months later. The expression of VEGF protein was detected by immunohistochemistry method. Reverse transcription-polymerase chain reaction(RT-PCR) analysis was used to examine the expression of retinal VEGF mRNA and cyclooxygenase-2 mRNA. Results Lower positive expression of VEGF mRNA and cyclooxygenase-2 mRNA, weakly positive action of immunohistochemistry of VEGF, and lower expression of VEGF protein were detected in normal control group; in the diabetic group, the expression of VEGF mRNA and cyclooxygenase-2 mRNA increased obviously comparing with which in the control group (Plt;0.05), and the bly positive action of immunohistochemistry of VEGF and increased expression of VEGF protein were detected (Plt;0.01); in celecoxib group, the expression of VEGF mRNA was lower than that in the diabetic group (Plt;0.05), the expression of cyclooxygenase-2 mRNA didnprime;t decrease much (Pgt;0.05), the positive action of immunohistochemistry of VEGF decreased, and the expression of VEGF protein decreased (Plt;0.01). Conclusion By inhibiting the activation of cyclooxygenase-2, celecoxib can inhibit the expression of retinal VEGF mRNA and protein in diabetic rats induced by streptozotocin. (Chin J Ocul Fundus Dis,2007,23:265-268)
ObjectiveTo predict as well as bioinformatically analyze the target genes of has-miR-451. MethodsmiRBase, miRanda, TargetScan and PicTar were used to predict the target genes of hsa-miRNA-451. The functions of the target genes were demonstrated by Gene Ontology and pathway enrichment analysis. P < 0.05 was set as statistically significant. Results18 target spots of hsa-miRNA-451 were predicted by 3 databases or prediction software at least. The functions of the target genes were enriched in proliferation and development of epithelial cells and regulation of kinase activity (P < 0.05). Pathway analysis showed that transforming growth factor-beta signaling pathway, mitogen-activated protein kinase signaling pathway, epidermal growth factor signaling pathway, Wnt signaling pathway and mammalian target of rapamycin signaling pathway were significantly enriched (P < 0.05). Conclusionhsa-miRNA-451 might be involved in various signaling pathways related to proliferation and development of epithelial cells.
Epigenetics refers to the changes in gene expression level and function caused by non-genetic sequence changes. It can provide the time, location and mode of the genetic information for the execution of DNA sequences, including DNA methylation, histone modification, non-coding RNA and chromatin remodeling. Studies had shown that epigenetics plays an important role in the development of diabetic retinopathy (DR), and it had been found that epigenetic-related treatment regimens had a certain effect on the treatment of DR through animal experiments and in vitro experiments. It was benefit to regulate the development of diabetes and its complications by depth study of DNA methylation, histone modification, miRNA and metabolic memory. An understanding of changes in gene transcriptional mechanisms at the epigenetic level could help us to further study the prevention and control of diabetes and its complications, and to provide new ideas for treatment.