west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "神经网络" 133 results
  • Application of Artificial Neural Network in Disease Prognosis Research

    Abstract: Diseases prognosis is often influenced by multiple factors, and some intricate non-linear relationships exist among those factors. Artificial neural network (ANN), an artificial intelligence model, simulates the work mode of biological neurons and has a b capability to analyze multi-factor non-linear relationships. In recent years, ANN is increasingly applied in clinical medical fields, especially for the prediction of disease prognosis. This article focuses on the basic principles of ANN and its application in disease prognosis research.

    Release date:2016-08-30 05:28 Export PDF Favorites Scan
  • Application of machine learning algorithm in clinical diagnosis and survival prognosis analysis of lung cancer

    Lung cancer is one of the tumors with the highest incidence rate and mortality rate in the world. It is also the malignant tumor with the fastest growing number of patients, which seriously threatens human life. How to improve the accuracy of diagnosis and treatment of lung cancer and the survival prognosis is particularly important. Machine learning is a multi-disciplinary interdisciplinary specialty, covering the knowledge of probability theory, statistics, approximate theory and complex algorithm. It uses computer as a tool and is committed to simulating human learning methods, and divides the existing content into knowledge structures to effectively improve learning efficiency and being able to integrate computer science and statistics into medical problems. Through the introduction of algorithm to absorb the input data, and the application of computer analysis to predict the output value within the acceptable accuracy range, identify the patterns and trends in the data, and finally learn from previous experience, the development of this technology brings a new direction for the diagnosis and treatment of lung cancer. This article will review the performance and application prospects of different types of machine learning algorithms in the clinical diagnosis and survival prognosis analysis of lung cancer.

    Release date:2022-06-24 01:25 Export PDF Favorites Scan
  • Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network

    Glaucoma is the leading cause of irreversible blindness, but its early symptoms are not obvious and are easily overlooked, so early screening for glaucoma is particularly important. The cup to disc ratio is an important indicator for clinical glaucoma screening, and accurate segmentation of the optic cup and disc is the key to calculating the cup to disc ratio. In this paper, a full convolutional neural network with residual multi-scale convolution module was proposed for the optic cup and disc segmentation. First, the fundus image was contrast enhanced and polar transformation was introduced. Subsequently, W-Net was used as the backbone network, which replaced the standard convolution unit with the residual multi-scale full convolution module, the input port was added to the image pyramid to construct the multi-scale input, and the side output layer was used as the early classifier to generate the local prediction output. Finally, a new multi-tag loss function was proposed to guide network segmentation. The mean intersection over union of the optic cup and disc segmentation in the REFUGE dataset was 0.904 0 and 0.955 3 respectively, and the overlapping error was 0.178 0 and 0.066 5 respectively. The results show that this method not only realizes the joint segmentation of cup and disc, but also improves the segmentation accuracy effectively, which could be helpful for the promotion of large-scale early glaucoma screening.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module

    In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions.

    Release date:2025-02-21 03:20 Export PDF Favorites Scan
  • Analysis of the risk factors and screening model establishment of type 2 diabetes mellitus based on the particle swarm optimization BP neural network

    Objective To analyze the risk factors of type 2 diabetes mellitus and establish BP neural network model for screening of type 2 diabetes mellitus based on particle swarm optimization (PSO) algorithm. Methods Inpatients with type 2 diabetes mellitus in the Department of Endocrinology of the Affiliated Hospital of Guangdong Medical University and the Second Affiliated Hospital of Guangdong Medical University between July 2021 and August 2022 were selected as the case group and healthy people in the Health Management Center of the Affiliated Hospital of Guangdong Medical University as the control group. Basic information and physical and laboratory examination indicators were collected for comparative analysis. PSO-BP neural network model, BP neural network model and logistic regression models were established using MATLAB R2021b software and the optimal screening model of type 2 diabetes mellitus was selected. Based on the optimal model, the mean impact value algorithm was used to screen the risk factors of type 2 diabetes mellitus. Results A total of 1 053 patients were included in the case group and 914 healthy peoples in the control group. Except for type of salt, family history of comorbidities, body mass index, total cholesterol, low density lipoprotein cholesterol and staple food intake (P>0.05), the other indexes showed significant differences between the two groups. The performance of the PSO-BP neural network model outperformed the BP neural network model and the logistic regression model. Based on PSO-BP neural network model, the mean impact value algorithm showed that the risk factors for type 2 diabetes mellitus were fasting blood glucose , heart rate, age , waist-arm ratio and marital status , and the protective factors for type 2 diabetes mellitus were high density lipoprotein cholestero, vegetable intake, residence, education level, fruit intake and meat intake. Conclusions There are many influencing factors of type 2 diabetes mellitus. Focus should be placed on high-risk groups and regular disease screening should be carried out to reduce the risk of type 2 diabetes. The screening model of PSO-BP neural network performs the best, and it can be extended to the early screening and diagnosis of other diseases in the future.

    Release date:2024-02-29 12:03 Export PDF Favorites Scan
  • Research on prediction method of left ventricular blood pressure based on external heart sounds

    The continuous left ventricle blood pressure prediction based on selected heart sound features was realized in this study. The experiments were carried out on three beagle dogs and the variations of cardiac hemodynamics were induced by various dose of epinephrine. The phonocardiogram, electrocardiogram and blood pressures in left ventricle were synchronously acquired. We obtained 28 valid recordings in this study. An artificial neural network was trained with the selected feature to predict left ventricular blood pressure and this trained network made a good performance. The results showed that the absolute average error was 7.3 mm Hg even though the blood pressures had a large range of fluctuation. The average correlation coefficient between the predicted and the measured blood pressure was 0.92. These results showed that the method in this paper was helpful to monitor left ventricular hemodynamics non-invasively and continuously.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Analysis on the influencing factors of hospitalization expenses in patients with uterine adenomyosis

    Objective To analyze the crucial factors which affect the hospitalization expenses of patients with uterine adenomyosis, in order to take corresponding measures. Methods A total of 583 patients diagnosed with uterine fibroids reported by hospitals in urban areas of Suining city through hospital quality monitoring system between December 2013 and December 2015 were included in this study. The main reasons for the expense structure was described by Pareto’s law. The importance of hospitalization expense influencing factors was analyzed by neural network model, and single factor analysis was used to analyze important influencing factors of hospitalization expenses. Results The main factors influencing hospitalization expenses included length of stay in hospital, operation techniques and illness conditions, and their importance value was respectively 0.581, 0.175 and 0.088. Conclusion Based on hospitalization expenses, length of stay in hospital and expense structure, high intensity focused ultrasound therapy is more reasonable in the treatment of uterine adenomyosis.

    Release date:2017-02-22 03:47 Export PDF Favorites Scan
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • An anesthesia depth computing method study based on wavelet transform and artificial neural network

    General anesthesia is an essential part of surgery to ensure the safety of patients. Electroencephalogram (EEG) has been widely used in anesthesia depth monitoring for abundant information and the ability of reflecting the brain activity. The paper proposes a method which combines wavelet transform and artificial neural network (ANN) to assess the depth of anesthesia. Discrete wavelet transform was used to decompose the EEG signal, and the approximation coefficients and detail coefficients were used to calculate the 9 characteristic parameters. Kruskal-Wallis statistical test was made to these characteristic parameters, and the test showed that the parameters were statistically significant for the differences of the four levels of anesthesia: awake, light anesthesia, moderate anesthesia and deep anesthesia (P < 0.001). The 9 characteristic parameters were used as the input of ANN, the bispectral index (BIS) was used as the reference output, and the method was evaluated by the data of 8 patients during general anesthesia. The accuracy of the method in the classification of the four anesthesia levels of the test set in the 7:3 set-out method was 85.98%, and the correlation coefficient with the BIS was 0.977 0. The results show that this method can better distinguish four different anesthesia levels and has broad application prospects for monitoring the depth of anesthesia.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • Application of Back Propagation Neural Network Technology in Diagnosis of Thyroid Carcinoma

    目的 建立基于反传(BP)神经网络技术的甲状腺癌诊断模型,并评估该模型的临床应用价值。方法 回顾性分析2010年1月至2011年8月期间南京市鼓楼医院收治的甲状腺癌患者103例及甲状腺良性病变患者51例,提取其超声图像的9个特征,循建模规则,建立基于BP神经网络技术的甲状腺癌诊断模型,依此模型对2011年9月至2011年12月期间收治的根据超声图像特征疑为甲状腺癌的42例患者进行术前诊断,其结果与术后病理诊断结果(术后病理诊断为甲状腺癌32例,甲状腺良性病变10例)进行对比研究。结果 甲状腺癌诊断模型对建模样本的诊断准确率为95.45%(147/154);术前样本的诊断准确率为90.48%(38/42);所有样本的诊断准确率为94.39% (185/196)。结论 从本组有限的病例结果初步得出,基于BP神经网络技术的甲状腺癌诊断模型具有较高的可行性及可靠性,可望成为一种全新的甲状腺癌辅助诊断方法。

    Release date:2016-09-08 10:24 Export PDF Favorites Scan
14 pages Previous 1 2 3 ... 14 Next

Format

Content