Since Ⅰ982, Twenty-five cases of birth injuries of brachial plexus have been treated by microsurgical technipue. The satisfactory result has been obtained. The excellent and good rate are 76 per cent. The operative method included endoneurolysis, anastomosis of nerve, supraclavicular nerve grafting and transposition of phrenic nerve, accessory nerve and cervix motor nerve. In this article, the early diagnosis and differentiel diagnosis, practical physical examination method, and operative technipue were descused.
ObjectiveTo review and analyze the long-term results of delayed repair of median nerve injury. MethodsBetween January 2004 and December 2008, 228 patients with median nerve injury undergoing delayed repair were followed up for more than 4 years, and the clinical data were retrospectively analyzed. There were 176 males (77.19%) and 52 females (22.81%), aged 2-71 years (median, 29 years). The main injury reason was cutting injury in 159 cases (69.74%);203 cases had open injury (89.04%). According to the injury level, injury located at area I (upper arm) in 38 cases (16.67%), at area II (elbow and proximal forearm) in 53 cases (23.25%), at area III (anterior interosseous nerve) in 13 cases (5.70%), and at area IV (distal forearm to wrist) in 124 cases (54.39%). The delayed operations included delayed suture (50 cases, 21.93%), nerve release (149 cases, 65.35%), and nerve graft (29 cases, 12.72%). ResultsFor patients with injury at area I and area II, the results were good in 23 cases (25.27%), fair in 56 cases (61.54%), and poor in 12 cases (13.18%) according to modified Birch and Raji’s median nerve grading system;there was significant difference in the results between 3 repair methods for injury at area II (χ2=6.228, P=0.044), but no significant difference was found for injury at area I (χ2=2.241, P=0.326). Twelve patients (13.18%) needed musculus flexor functional reconstruction. Recovery of thenar muscle was poor in all patients, but only 5 cases (5.49%) received reconstruction. Thirteen cases of nerve injury at area III had good results, regardless of the repair methods. For patients with injury at area IV, the results were excellent in 6 cases (4.84%), good in 22 cases (17.74%), fair in 72 cases (58.06%), and poor in 24 cases (19.35%) according to Birch and Raji’s grading system;there was significant difference in the results between 3 repair methods (χ2=12.646, P=0.002), and the result of delayed repair was better. ConclusionThe results of delayed repair is poor for all median nerve injuries, especially for high level injury. The technique of repair methods vary with injury level. For some delayed median nerve injuries, early nerve transfer may be a better choice for indicative patients.
ObjectiveTo investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. MethodsForty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L1 transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n=20) and experimental group (n=20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. ResultsAfter establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P>0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. ConclusionDirect reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.
Objective To observe the histomorphology and the biocompatibil ity of acellular nerve prepared by different methods, to provide the experimental evidence for the selection of preparation of acellular nerve scaffold. Methods Forty-eight adult Sprague Dawley rats, male or female, weighing 180-220 g, were selected. The sciatic nerves were obtained from 30 rats and were divided into groups A, B, and C (each group had 20 nerves). The acellular sciatic nerves were prepared by the chemical methods of Dumont (group A), Sondell (group B), and Haase (group C). The effect to remove cells was estimated by the degree of decellularization, degree of demyel ination, and intergrity of nerve fiber tube. The histocompatibil ity was observed by subcutaneous implant test in another 18 rats. Three points were selected along both sides of centre l ine on the back of rats, and the points were randomly divided into groups A1, B1, and C1; the acellular nerve of groups A, B, and C were implanted in the corresponding groups A1, B1, and C1. At 1, 2, and 4 weeks after operation, the rats were sacrificed to perform the general observation and histological observation. Results The histomorphology: apart of cells and the dissolved scraps of axon could be seen in acellular never in the group A, and part of Schwann cell basilar membrane was broken. In group B, the cells in the acellular never were not removed completely, the Schwann cell basilar membrane formed bigger irregular hollows, part of the Schwann cell basilar membrane was broken obviously. But in the group C, the cells were completely removed, the Schwann cell basilar membrane remained intactly. Group C was better than group A and group B in the degree of decellularization, degree of demyel ination, integrity of nerve fiber tube and total score, showing significant differences (P lt; 0.05). The subcutaneous implant test: there were neutrophils and lymphocytes around the acellular nerve in 3 groups at 1 week after implant. A few of lymphocytes were observed around the acellular nerve in 3 groups at 2 weeks after implant. The inflammation was less in groups A1, B1, and C1 at 4 weeks after implant, part of the cells grew into the acellular nerve and arranged along the Schwann cell basilar membrane. The reaction indexes of the inflammational cells in group A1 and group B1 were higher than that in group C1 at 1, 2, and 4 weeks after implant, showing significant differences (P lt; 0.01), but there was no significant difference between group A1 and group B1 (P gt; 0.05). Conclusion The acellular sciatic nerves prepared by Haase method has better acellular effect and the histocompatibil ity than those by the methods of Dumont and Sondell.
The sciatic nerves of adult rats were sectioned bilaterally and the ends of the nerves were placed in silicone tubes. One side of the distal nerve segment was inverted and that of the contralateral side was non-inverted. After 2, 4, 6 weeks, the rats were killed and the specimens were removed for macroscopic, histologic and morphometric analysis. The results showed that either the inverted or non-inverted distal nerve segments had no influence on the number of the myelinated axons in the regenerated nerves, but the number and density of the myelinated axons was markedly diminished in the inverted distal nerve segments.
Ten cases of neurotmesis of posterior interosseous nerve of the forearm were treated with mierosurgical technique from Aug, 1988 to Oct. 1990, of which, 4 cases by autogenous nerve graft and 6 cases by direct neurosuture. Eight cases have been followed-up from 4 months to 1 year after operation concerning with satisfactory results. Some questions the diagnosis, the points for attention in operation, and the relation of the results and the time when the operation done were discussed. The comparison of the results and the recovery time between the autogenous-nerve graft and direct neurosuture was made.
Objective o study the feasibility of homologous vascularized nerve transplantation after ultra deep cryopreservation. Methods Vascularized sciatic nerve from 12 female dogs was transplanted after ultra deep cryopreservation. Fortyeight male dogs were divided into 4 groups: ultra deep cryopreservation homologous vascularized nerve (group A), ultra deep cryopreservation homologous nerve (group B), fresh homologous vascularized nerve (group C), and fresh autologous vascularized nerve (group D). The gross appearance, patency rate of arteryand morphological transplanted nerve were observed 1, 4 and 12 weeks after transplantation respectively. Immunological analysis was performed using IL 2 assay and T lymphocyte subpopulations assay after 4 weeks. Image pattern analysis andelectromyogram were observed after 12 weeks. Results In groups A and D, no toe ulcer occurred, the atrophy of later limb and the sense of pain from skin of calf were restore significantly in the postoperative 12th week. In groups B and C, toe ulcer occurred, the atrophy of later limb and the sense of pain from skin of calf were not restored significantly in the postoperative 12thweek. The vessel patency rate of groups A and D was 83.3%, which was significantly higher than that of group C (50%,Plt;0.05). The changes of IL2 and Th, Ts in group C were significantly higher than that in groups A,B,D(Plt;0.01). There were increased vessel and regenerated nerve in transplanted nerve under optical microscope and image pattern analysis in groups A and D. There were shorter latent period of motor evoked potential, greater amplitude of action potenlial and faster motor nerve conducting velocity in groups A and D after 12 weeks. Conclusion The antigenicity of the homologous never and vessel may be reduced significantly by being frozen, and cryopreserved vascularized nerve can transferred successfully without the use of immunosuppressive agents. Vascularized nerve may restore good significantly for the thick nerve.
Objective To explore the effect of tri pterygium glycoside (TG) on the skeletal muscle atrophy and apoptosis after nerve allograft. Methods Twenty Wistar male rats were adopted as donors, weighing 200-250 g, and the sciatic nerves were harvested. Fifty SD male rats were adopted as recipients, weighing 200-250 g. Fifty SD rats were made the models of10 mm right sciatic nerve defect randomly divided into five groups (n=10): group A, group B, group C, group D and group E.groups A and B received fresh nerve allograft, groups C and D received sciatic nerve allograft pretreated with TG, and group E received autograft. The SD rats were given medicine for 5 weeks from the second day after the transplantation: groups A and E were given physiological sal ine, groups B and D TG 5 mg/ (kg·d), and group C TG 2.5 mg/ (kg·d). At 3 and 6 weeks, respectively, after nerve transplantation, general observation was performed; the structure of skeletal muscles was observed by HE staining; the diameter of skeletal muscles was analyzed with Image-Pro Plus v5.2; the ultrastructure of skeletal muscles was observed by TEM; the expressions of Bax and Bcl-2 were detected by immunohistochemical staining; and the apoptosis of skeletal muscles was detected by TUNEL. Results All rats survived to the end of the experiment. In general observation, the skeletal muscles of SD rates atrophied to different degrees 3 weeks after operation. The muscular atrophy in group A was more serious at 6 weeks, and that in the other groups improved. The wet weight, fiber diameter and expression of Bcl-2 in group A were significantly lower than those in groups B, C, D and E (P lt; 0.01);those in groups B, C and D were lower than those in group E (P lt; 0.05); and there were no significant differences among groups B, C and D (P gt; 0.05). The apoptosis index and expression of Bax in group A were significantly higher than those in groups B, C, D and E (P lt; 0.01);those in groups B, C and D were higher than in groupE (Plt; 0.05); and there were no significant differences among groups B, C and D (P gt; 0.05). Three weeks after nerve allograft, under the l ight microscope, the muscle fibers became thin; under the TEM, the sarcoplasmic reticulum was expanded. Six weeks after nerve allograft, under the l ight microscope, the gap of the muscle fibers in group A was found to broaden and connective tissue hyperplasia occurred obviously; under the TEM, sarcomere damage, serious silk dissolution and fragmentary Z l ines were seen in group A, but the myofibrils were arranged tidily in the other groups, and the l ight band, dark band and sarcomere were clear. Conclusion TG can decrease the skeletal muscle atrophy and apoptosis after nerve allograft. The donor’s nerve that is pretreated with TG can reduce the dosage of immunosuppressant for the recipient after allograft.