west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "电刺激" 75 results
  • Prospect of application of novel neuromodulation technology in children with drug-refractory epilepsy

    In the treatment of drug-refractory epilepsy in children, surgical treatment has a good clinical effect. However, for children whose surgical site is difficult to determine and who cannot undergo resectional surgery, neuromodulation techniques are one of the treatments that can be considered. At present, new neuromodulation technologies in children mainly include transcutaneous vagus nerve stimulation (transcutaneous auricular vagus nerve stimulation, ta-VNS), deep brain stimulation (deep brain stimulation, DBS), reactive nerve stimulation (responsive neurostimulation, RNS), transcranial magnetic stimulation (transcranial magnetic stimulation, TMS), transcranial direct current stimulation (transcranial direct current stimulation, TDCS) and transcranial alternating current stimulation (transcranial alternating current stimulation, TACS). This article briefly discussed the clinical efficacy and safety of various currently available neuromodulation technologies, so as to provide a reference for the rational selection and application of neuromodulation technologies, and improve the clinical efficacy and quality of life of children with drug-refractory epilepsy.

    Release date:2025-01-11 02:34 Export PDF Favorites Scan
  • Nursing analysis of 7 cases with Tardive dyskinesia treated by deep brain stimulation

    ObjectiveTo explore the best nursing regimen for patients with severe Tardive dyskinesia (TD) after deep brain stimulation (DBS). MethodsTo analyze the clinical nursing data of 7 patients with TD treated by DBS in our department from January 2018 to August 2019, preoperative assessment of the patient's condition, dyskinesia care, psychological care, preoperative preparation, preoperative guidance, etc. General nursing, observation and nursing of complications, psychological nursing, safety management and rehabilitation training of limb function were carried out after operation discharge to discharge guidance, daily life guidance, DBS device-related education and other post-discharge continuous care to help patients improve quality of life. The changes of TD symptoms were assessed with the abnormal involuntary movement scale -LRB-AIMS, the nursing effect was assessed with the psychiatric nursing observation sc-Nosiee (NOSIE) , and the self-care ability was assessed with the ability of daily livin-ADL- scale (ADL). ResultsAll of the 7 TD patients recovered well after operation, without complications caused by improper nursing, and the TD symptoms were relieved. The AIMS and NOSIE scores were significantly lower at 1 month, 3 months and 1 year after operation than those before operation (P<0.05). The ADL scores were significantly higher than those before operation (P<0.05). ConclusionIn order to treat TD patients with DBS operation, we should pay attention to the pertinent nursing in perioperative period and the continuous nursing after discharge, it is of great significance to relieve the symptoms of involuntary movement, improve the mental state and improve the self-care ability of patients with TD.

    Release date:2023-05-04 04:20 Export PDF Favorites Scan
  • Design of functional array electrode stimulation system with surface electromyography feedback

    In order to solve the problems of insufficient stimulation channels and lack of stimulation effect feedback in the current electrical stimulation system, a functional array electrode electrical stimulation system with surface electromyography (sEMG) feedback was designed in this paper. Firstly, the effectiveness of the system was verified through in vitro and human experiments. Then it was confirmed that there were differences in the number of amperage needed to achieve the same stimulation stage among individuals, and the number of amperage required by men was generally less than that of women. Finally, it was verified that the current required for square wave stimulation was smaller than that for differential wave stimulation if the same stimulation stage was reached. This system combined the array electrode and sEMG feedback to improve the accuracy of electrical stimulation and performed the whole process recording of feedback sEMG signal in the process of electrical stimulation, and the electrical stimulation parameters could change with the change of the sEMG signal. The electrical stimulation system and sEMG feedback worked together to form a closed-loop electrical stimulation working system, so as to improve the efficiency of electrical stimulation rehabilitation treatment. In conclusion, the functional array electrode electrical stimulation system with sEMG feedback developed in this paper has the advantages of simple operation, small size and low power consumption, which lays a foundation for the introduction of electrical stimulation rehabilitation treatment equipment into the family, and also provides certain reference for the development of similar products in the future.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Therapeutic Effect of Medium Frequency ElectroStimulant Therapy for Dysphagia in Stroke Patients

    目的:观察中频电刺激治疗急性缺血性脑卒中后吞咽困难的临床疗效。方法:选取急性缺血性脑卒中并发生吞咽困难的患者80例,随机分为治疗组和对照组,两组临床用药完全一致,对照组和治疗组分别辅以冰刺激和中频电刺激进行康复治疗,疗程为1月。观察患者吞咽困难的恢复情况.结果:治疗组治愈率为35%,总有效率为90%,与对照组比较差异具显著性。结论:中频电刺激是治疗脑卒中后吞咽困难的一种有效、简便、安全的方法,可推荐临床使用。

    Release date:2016-09-08 10:01 Export PDF Favorites Scan
  • Development of an Analgesia Therapy System for Delivery Based on Bio-feedback Transcuataneous Electrical Nerve Stimulation

    Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness.

    Release date: Export PDF Favorites Scan
  • Design of an Embedded Stroke Rehabilitation Apparatus System Based on Linux Computer Engineering

    A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

    Release date: Export PDF Favorites Scan
  • An efficient and practical electrode optimization method for transcranial electrical stimulation

    Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE PROMOTIVE EFFECT OF PERCUTANEOUS ELECTRICAL STIMULATION ON PERIPHERAL NERVE REGENERATION

    To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • Research on the effect of multi-modal transcranial direct current stimulation on stroke based on electroencephalogram

    As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation (P < 0.05), in the left central region after anodal-stimulation (P < 0.05), and in the frontal and right central regions after cathodal-stimulation (P < 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation (P < 0.05), in the left frontal and right central regions after anodal- stimulation (P < 0.05), and in the central and right occipital regions after cathodal-stimulation (P < 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant (P > 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • A study on the effects of transcranial direct current stimulation combined with motor imagery on brain function based on electroencephalogram and near infrared spectrum

    Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
8 pages Previous 1 2 3 ... 8 Next

Format

Content