Ras homolog family (Rho)/ Rho-associated coiled-coil kinase (ROCK) signaling pathway widely exists in human and mammal cells, which is closely related to inhibition of repair after optic nerve damage. The expression level of Rho/ROCK signaling pathway-related proteins is up-regulated in glaucoma, and related with the death of retinal ganglionic cell (RGC) and the axon activity. ROCK inhibitors can protect the surviving RGC and promote axon extension with a dose-dependent manner. ROCK inhibitors also can inhibit glial scar formation, lower intraocular pressure and inhibit inflammatory response to some degrees. Rho/ROCK signaling pathway correlates with the optic nerve disease progression, and ROCK inhibitors hope to become a new therapeutic drug.
Outer retinal tubulations (ORT) are tubular structures that are visualized on spectral domain optical coherence tomography in single B-scans as nonedematous circular or ovoid structures at the level of the outer nuclear layer. It is most commonly seen in exudative age-related macular degeneration and pseudoxanthoma elasticum, as well as in multifocal choroiditis, panuveitis, geographic atrophy, central serous chorioretinopathy, polypoid choroidal neovascularization, choroideremia and some other diseases related to outer retinal structural damage. ORT is the structure of dislocation junction of outer membrane and ellipsoid band in the process of self-repair after destroyed. Cystoid retinal edema, subretinal fluid and photoreceptor layer damage are important factors for ORT formation. Anti-vascular endothelial growth factor (VEGF) drugs cannot make ORT disappear, and distinguishing between ORT and retinal cystoid edema is helpful to avoid unnecessary anti-VEGF treatment. ORT has a certain predictive value for the prognosis of vision, and has guiding significance for clinical treatment. However, the mechanism of ORT formation and its relationship with clinical practice are not yet fully understood. More advanced imaging equipment and a large number of cases are needed to study the formation of ORT and its relationship with classical choroidal neovascularization, retinal fibrous scarring and retinal atrophy.
The prevention and treatment of retinopathy of prematurity (ROP) is an important strategic content of blindness prevention and treatment in China. Medical institutions including remote areas have strengthened the awareness of neonatal fundus screening, however, there are problems of vague screening standards, mainly manifested in expanding the scope of screening and even universal screening of newborns. At the same time, all kinds of fundus changes found in the examination cannot be correctly interpreted and handled, which increase the economic and psychological burden of children's families. In addition, with the wide application of intravitreal injection of anti-neovascular endothelial growth factor, problems such as improper grasp of indications and improper treatment of complications have become increasingly prominent. At this stage, it is urgent to strengthen the construction of ROP prevention and control network, which is suitable for China's national conditions, led by the government and coordinated participation of health and medical institutions at all levels.
目的 了解老年卧床患者营养状况及其相关因素,为临床治疗及健康宣教提供依据。 方法 采用简易营养评价精法(MNA-SF)简化量表调查2010年11月-2012年3月成都市住院老年卧床患者的营养状况,同时采用自行设计的问卷调查其相关因素。 结果 老年卧床患者82.4%营养不良,而且不同文化程度、年龄、性别及病情的患者营养状况不同,差异有统计学意义(P<0.05),多因素分析发现,年龄、病情、卧床分级、抑郁是影响老年卧床患者营养的主要因素,病情重,年龄大、抑郁得分高、卧床分级高的老年卧床患者营养状况越差。 结论 老年卧床患者营养状况受多种因素影响,应根据患者不同情况进行营养相关知识宣教,改善患者的健康状况。
ObjectiveTo assess changes of blood flow density of idiopathic choroidal neovascularization (ICNV) treated with intravitreal anti-vascular endothelial growth factor (anti-VEGF).MethodsRetrospective case analysis. Sixteen eyes of 16 patients with ICNV diagnosed with FFA and OCT were included in this study. Among them, 12 were female and 4 were male. The mean age was 33.94±9.83 years. The mean course of diseases was 5.13±4.44 weeks. The BCVA, indirect ophthalmoscope, OCT and OCT angiography (OCTA) were performed at the first diagnosis in all patients. The BCVA was converted to logMAR. The macular fovea retinal thickness (CMT) was measured by OCT, and the selected area of CNV (CSA) and flow area of CNV (CFA) were measured by OCTA. The mean logMAR BCVA, CMT, CSA and CFA were 0.336±0.163, 268.500±57.927 μm, 0.651±0.521 mm2, 0.327±0.278 mm2 , respectively. All patients were treated with intravitreal ranibizumab (IVR, 10 mg/ml, 0.05 ml). Follow-up results including the BCVA, fundus color photography, OCT and OCTA were obtained 1 month after treatment. To compare the changes of BCVA, CMT, CSA, CFA of ICNV treated with anti-VEGF. Pearson method was used to analyze the correlation between logMAR BCVA and CMT, CSA and CFA before and after the treatment.ResultsOne month after treatment, the average logMAR BCVA, CMT, CSA and CFA were 0.176±0.111, 232.500±18.910 μm, 0.420±0.439 mm2, 0.215±0.274 mm2. The mean logMAR BCVA (t=5.471, P<0.001), CMT (t=2.527, P=0.023), CSA (t=4.039, P=0.001), CFA (t=4.214, P=0.001) significantly decreased at 1 month after injection compared to baseline, and the difference had statistical significance. The results of correlation analysis showed that the post-logMAR BCVA was moderately positively correlated with pre-CSA and post-CSA (r=0.553, 0.560; P=0.026, 0.024), and strongly correlated with pre-CFA and post-CFA (r=0.669, 0.606; P=0.005, 0.013), but not correlated with pre-CMT and post-CMT (r=0.553, 0.560; P=0.026, 0.024).ConclusionThe blood flow density of ICNV measured by OCTA were significantly decreased in the treatment of anti-VEGF drugs.
Objective To study the expression of NLRP3 inflammasome and its downstream inflammatory factors in patients with chronic obstructive pulmonary disease (COPD) and healthy controls, and to reveal the effect and significance of NLRP3 inflammasome in the pathogenesis of COPD. Methods Forty patients with acute exacerbation COPD (AECOPD) who were hospitalized from November 2016 to May 2017 were recruited in the AECOPD group, and recruited in the stable COPD group when they entered the stable stage. Forty healthy individuals were recruited in the control group. General information and peripheral blood were collected from each subject. The levels of NLRP3 mRNA and caspase-1 mRNA in peripheral blood mononuclear cells were measured by real-time PCR. The levels of IL-18 and IL-1β were measured by enzyme-linked immunosorbent assay. Results The levels of NLRP3 mRNA, IL-18 and IL-1β in the AECOPD patients were significantly higher than those in the stable COPD group [2.11±0.77, 12.79 (7.10, 43.13) pg/ml, 17.02 (8.36, 52.21) pg/ml vs. 1.60±0.44, 10.66 (6.32, 18.59) pg/ml, 13.34 (7.07, 16.89) pg/ml, all P<0.05] . The levels of NLRP3 mRNA, IL-18 and IL-1β in the AECOPD patients were significantly higher than those in the control group [2.11±0.77, 12.79 (7.10, 43.13) pg/ml, 17.02 (8.36, 52.21) pg/mlvs. 1.00±0.49, 6.29 (4.73, 7.93) pg/ml, 5.93 (4.81, 9.67) pg/ml, all P<0.05]. The levels of NLRP3 mRNA, IL-18 and IL-1β were significantly higher in the stable COPD group than the control group [1.60±0.44, 10.66 (6.32, 18.59) pg/ml, 13.34 (7.07, 16.89) pg/mlvs. (1.00±0.49, 6.29 (4.73, 7.93) pg/ml, 5.93 (4.81, 9.67) pg/ml, all P<0.05]. Correlation analysis showed that the plasma IL-18 level was positive correlated with leukocyte count and neutrophil percentage in the AECOPD group (r=0.372, P<0.05;r=0.386, P<0.05). The expression of NLRP3 mRNA in the AECOPD group and stable COPD group were positively correlated with the CAT score (r=0.387, P<0.05;r=0.399, P<0.05) . Conclusion NLRP3 inflammasome is involved in the inflammatory response in COPD patients.
ObjectiveTo observe and preliminarily discuss the distribution characteristics of the non-perfusion area (NP) of the retina in different stages of diabetic retinopathy (DR) and its changes with the progression of DR. MethodsA retrospective clinical study. From October 2018 to December 2020, 118 cases of 175 eyes of DR patients diagnosed in Eye Center of Renmin Hospital of Wuhan University were included in the study. Among them, there were 64 males with 93 eyes and 54 females with 82 eyes; the average age was 56.61±8.99 years old. There were 95 eyes of non-proliferative DR (NPDR), of which 25, 47, and 23 eyes were mild, moderate, and severe; 80 eyes were proliferative DR (PDR). Ultra-wide-angle fluorescein fundus angiography was performed with the British Optos 200Tx imaging system, and the fundus image was divided into posterior, middle, and distal parts with Image J software, and the ischemic index (ISI) was calculated. The difference of the retina in different DR staging groups and the difference of ISI were compared in the same area. The Kruskal-Wallis test was used to compare the ISI between the different DR staging groups and the Kruskal-Wallis one-way analysis of variance was used for the pairwise comparison between the groups. ResultsThe ISI of the posterior pole of the eyes in the moderate NPDR group, severe NPDR group, and PDR group were significantly greater than that in the distal periphery, and the difference was statistically significant (χ2=6.551, 3.540, 6.614; P=0.000, 0.002, 0.000). In severe NPDR group and PDR group, the ISI of the middle and peripheral parts of the eyes was significantly greater than that of the distal parts, and the difference was statistically significant (χ2=3.027, 3.429; P=0.015, 0.004). In the moderate NPDR group, there was no significant difference in ISI between the peripheral and distal parts of the eye (χ2=2.597, P=0.057). The ISI of the posterior pole of the eyes in the moderate NPDR group and the PDR group was significantly greater than that in the middle periphery, and the difference was statistically significant (χ2=3.955, 3.184; P=0.000, 0.009). In the severe NPDR group, there was no significant difference in ISI between the posterior pole and the middle periphery of the eye (χ2=0.514, P=1.000). Compared with the mild NPDR group and the moderate NPDR group, the ISI of the whole retina, posterior pole, middle and distal parts of the PDR group was larger, and the difference was statistically significant (χ2=-7.064, -6.349,-6.999, -5.869, -6.695, -6.723, -3.459, -4.098; P=0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.003, 0.000). ConclusionThe NP of the eyes with different DR stages is mainly distributed in the posterior pole and the middle periphery. The higher the severity of DR, the greater the NP in the posterior and middle periphery.