Objective To explore the white matter microstructural abnormalities in patients with different subtypes of attention-deficit/hyperactivity disorder (ADHD) and establish a diagnostic classification model. Methods Patients with ADHD admitted to West China Hospital of Sichuan University between January 2019 and September 2021 and healthy controls recruited through advertisement were prospectively selected. All participants underwent diffusion tensor imaging scanning. The whole brain voxel-based analysis was used to compare the diffusion parameter maps of fractional anisotropy (FA) among patients with combined subtype of ADHD (ADHD-C), patients with inattentive subtype of ADHD (ADHD-I) and healthy controls. The support vector machine classifier and feature selection method were used to construct the individual ADHD diagnostic classification model and efficiency was evaluated between each two groups of the ADHD patients and healthy controls. Results A total of 26 ADHD-C patients, 24 ADHD-I patients and 26 healthy controls were included. The three groups showed significant differences in FA values in the bilateral sagittal stratum of temporal lobe (ADHD-C<ADHD-I<healthy controls) and the isthmus of corpus callosum (ADHD-C>ADHD-I>healthy controls) (P<0.005). The direct comparison between the two subtypes of ADHD showed that ADHD-C had higher FA than ADHD-I in the right middle frontal gyrus. The classification model differentiating ADHD-C and ADHD-I showed the highest efficiency, with a total accuracy of 76.0%, sensitivity of 88.5%, and specificity of 70.8%. Conclusions There is both commonality and heterogeneity in white matter microstructural alterations in the two subtypes of patients with ADHD. The white matter damage of the sagittal stratum of temporal lobe and the corpus callosum may be the intrinsic pathophysiological basis of ADHD, while the anomalies of frontal brain region may be the differential point between different subtypes of patients.
Aiming at the difference between the brain networks of children with attention deficit hyperactivity disorder (ADHD) and normal children in the task-executing state, this paper conducted a comparative study using the network features of the visual function area. Functional magnetic resonance imaging (fMRI) data of 23 children with ADHD [age: (8.27 ± 2.77) years] and 23 normal children [age: (8.70 ± 2.58) years] were obtained by the visual capture paradigm when the subjects were performing the guessing task. First, fMRI data were used to build a visual area brain function network. Then, the visual area brain function network characteristic indicators including degree distribution, average shortest path, network density, aggregation coefficient, intermediary, etc. were obtained and compared with the traditional whole brain network. Finally, support vector machines (SVM) and other classifiers in the machine learning algorithm were used to classify the feature indicators to distinguish ADHD children from normal children. In this study, visual brain function network features were used for classification, with a classification accuracy of up to 96%. Compared with the traditional method of constructing a whole brain network, the accuracy was improved by about 10%. The test results show that the use of visual area brain function network analysis can better distinguish ADHD children from normal children. This method has certain help to distinguish the brain network between ADHD children and normal children, and is helpful for the auxiliary diagnosis of ADHD children.
Objective To assess atomoxetine and methylphenidate therapy for attention- deficit/ hyperactivity disorder (ADHD) .Methods We electronically searched the Cochrane Library (Issue 2, 2008), PubMed (1970 to 2008), MEDLINE (1971 to 2008), EMbase (1971 to 2008), Medscape (1990 to 2008), CBM (1978 to 2008), and NRR (1950 to 2008). We also hand-searched some published and unpublished references. Two independent reviewers extracted data. Quality was assessed by the Cochrane Reviewer’s Handbook 4.0. Meta-analysis was conducted by The Cochrane Collaboration’s RevMan 4.2.8 software. Results We finally identified 3 randomized controlled trials that were relevant to the study. Treatment response (reducing ADHD-RS Inattention subscale score) was significantly greater for patients in the methylphenidate group than in the atomoxetine group with WMD= – 1.79 and 95%CI – 2.22 to 1.35 (Plt;0.000 01). There was no statistical difference in other outcome measures between two groups (Pgt;0.05). Conclusions The effectiveness and tolerance of methylphenidate and atomoxetine are similar in treatment of ADHD. Further large randomized, double blind, placebocontrolled trials with end-point outcome measures in long-term safety and efficacy are needed.
This study aims to explore the differences of event related potential (ERP) between attention deficit hyperactivity disorder (ADHD) and normal children, so that these differences provide scientific basis for the diagnosis of ADHD. Eight children were identified to be ADHD group by the diagnostic criteria of DSM IV (diagnostic and statistical manual of mental disorders IV), and the control group also consisted of 8 normal children. Modified visual continuous performance test (CPT) was used as the experiment paradigm. The experiment included two major conditions, i.e. Go and NoGo. All the 16 subjects participated in the study. A high density EEG acquisition instrument was used to record the EEG signal and processed these EEG data by means of ERP and spectrum analysis. P2 N2 peak peak value and spectral peak around 11 Hz were analyzed between ADHD subjects and those in the control group, and then statistical tests were applied to these two groups. Results showed that: ① Under the condition of Go, ADHD group had a significant lower P2 N2 peak peak value than the values in the control group ( P< 0.05); but under the condition of NoGo there was no significant difference in between. ② Compared with the control group, the ADHD group had significant lower spectral amplitude around 11 Hz under the condition of NoGo ( P< 0.05). However, under the condition of Go the difference was insignificant. In conclusion, there is certain cognitive dysfunction in ADHD children. P2-N2 peak-peak value and spectral peak around 11 Hz could be considered as clinical evaluation indexes of ADHD children′s cognitive function. These two objective indexes provide an early diagnosis and effective treatment of ADHD .
ObjectiveTo observe the effect of sensory integration training combined with methylphenidate hydrochloride on attention deficit hyperactivity disorder (ADHD). MethodsThe clinical data of 96 patients with ADHD diagnosed between January 2009 and March 2013 were retrospectively analyzed. The patients were divided into two groups by the table of random number. The trail group (n=48) received the combination therapy of sensory integration training combined with methylphenidate hydrochloride; while the control group (n=48) only received the medication of methylphenidate hydrochloride. The scores of sensory integration ability rating scale, integrated visual and auditory continuous performance test (IVA-CPT), Conner's behavior rating scale, Chinese Wechsler Intelligence Scale for Children (C-WISC) and adverse reactions were observed and compared between the two groups. ResultsThe scores of the sensory integration ability rating scale, FRCQ, FAQ (IVA-CPT), PIQ, VIQ, FIQ, C factor (C-WISC) in both of the two groups were significantly higher after the therapy; while the scores of the study, behavior, somatopsychic disturbance, impulsion, hyperactivity index and anxiety factor significantly decreased after the treatment (P<0.05). Compared with the control group, the trial group's scores of sensory integration ability rating scale, IVA-CPT, Conner's behavior rating scale, C-WISC were improved obviously, and the adverse reactions were significantly less (P<0.05). ConclusionThe sensory integration training combined with methylphenidate hydrochloride is sage and effective on children with attention deficit hyperactivity disorder.
A great number of studies have demonstrated functional abnormalities in children with attention-deficit/hyperactivity disorder (ADHD), although conflicting results have also been reported. And few studies analyzed homotopic functional connectivity between hemispheres. In this study, resting-state functional magnetic resonance imaging (MRI) data were recorded from 45 medication-naïve ADHD children and 26 healthy controls. The regional homogeneity (ReHo), degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) values were compared between the two groups to depict the intrinsic brain activities. We found that ADHD children exhibited significantly lower ReHo and DC values in the right middle frontal gyrus and the two values correlated with each other; moreover, lower VMHC values were found in the bilateral occipital lobes of ADHD children, which was negatively related with anxiety scores of Conners' Parent Rating Scale (CPRS-R) and positively related with completed categories of Wisconsin Card Sorting Test (WCST). Our results might suggest that less spontaneous neuronal activities of the right middle frontal gyrus and the bilateral occipital lobes in ADHD children.
Habitual snoring can occur in both children and adults. If it is physiological snoring, it usually does not require special intervention. If it is pathological snoring, such as snoring caused by central diseases and obstructive diseases, it needs to be treated as soon as possible. Habitual snoring has more harm to children, such as causing sleep structure disorders, slow growth and development. During the snoring process, children’s sleep fragmentation and hypoxia state lead to changes in the transmission of neurochemicals in the brain’s precortex, causing adverse effects on brain function and inducing attention deficit hyperactivity disorder. This article reviews relevant research in recent years to further elucidate the relationship between children’s habitual snoring and attention deficit hyperactivity disorder, and provide a basis for future clinical research and intervention.