west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "椎体压缩骨折" 37 results
  • Clinical study of percutaneous vertebroplasty through extreme extrapedicular approach in the treatment of osteoporotic vertebral compression fracture

    Objective To evaluate the effectiveness of percutaneous vertebroplasty (PVP) in the treatment of osteoporotic vertebral compression fracture (OVCF) through unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement. Methods The clinical data of 156 patients with OVCF who met the selection criteria between January 2014 and January 2016 were retrospectively analyzed. All patients were treated with PVP through unilateral puncture. According to different puncture methods, the patients were divided into two groups. In group A, 72 cases were performed PVP through the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement, while in group B, 84 cases were performed PVP through the unilateral puncture of transpedicular approach. There was no significant difference in general data of gender, age, weight, bone mineral density, lesion segment, and disease duration between the two groups (P>0.05). The radiation exposure time, operation time, volume of bone cement injection, rate of bone cement leakage, pre- and post-operative visual analogue scale (VAS) score and local Cobb angle were recorded and compared between the two groups. Results There was no significant difference in radiation exposure time and operation time between the two groups (P>0.05), but the volume of bone cement injection in group A was significantly more than that in group B (t=20.024, P=0.000). Patients in both groups were followed up 24-32 months (mean, 26.7 months). There were 9 cases (12.5%) and 10 cases (11.9%) of cement leakage in group A and B, respectively. There was no significant difference in the incidence (χ2=0.013, P=0.910). No neurological symptoms and discomfort was found in the two groups. The VAS scores of the two groups were significantly improved after operation (P<0.05). There was no significant difference in local Cobb angle between before and after operation in group A (P>0.05); but the significant difference was found in local Cobb angle between at 2 years after operation and other time points in group B (P<0.05). The VAS score and local Cobb angle in group A were significantly better than those in group B at 2 years after operation (P<0.05). Conclusion It is simple, safe, and feasible to use the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement to treat OVCF. Compared with the transpedicular approach, the bone cement can be distributed bilaterally in the vertebral body without prolonging the operation time and radiation exposure time, and has an advantage of decreasing long-term local Cobb angle losing of the fractured vertebrae.

    Release date:2019-05-06 04:48 Export PDF Favorites Scan
  • Effectiveness of synchronous unilateral percutaneous kyphoplasty in the treatment of double noncontiguous thoracolumbar osteoporotic vertebral compression fractures

    ObjectiveTo investigate the effectiveness of synchronous unilateral percutaneous kyphoplasty (PKP) in the treatment of double noncontiguous thoracolumbar osteoporotic vertebral compression fracture (OVCF). MethodsBetween December 2018 and September 2020, 27 patients with double noncontiguous thoracolumbar OVCF were treated by synchronous unilateral PKP. There were 11 males and 16 females, with an average age of 75.4 years (range, 66-92 years). The fractures were caused by falls in 22 cases and sprains in 5 cases. The time from injury to hospital admission was 0.5-7.0 days, with an average of 2.1 days. The fractured vertebrae located at T9 in 2 cases, T10 in 3 cases, T11 in 10 cases, T12 in 15 cases, L1 in 12 cases, L2 in 6 cases, L3 in 4 cases, and L4 in 2 cases. The volume of bone cement injected into each vertebral body, operation time, and intraoperative fluoroscopy times were recorded. Anteroposterior and lateral X-ray films of thoracolumbar spine were taken to observe the anterior height of the injured vertebra, the Cobb angle of kyphosis, and the diffusion and good distribution rate of bone cement in the thoracolumbar spine. Visual analogue scale (VAS) score and Oswestry disability index (ODI) were used to evaluate the pain and functional improvement. ResultsAll operations completed successfully. The operation time was 34-70 minutes, with an average of 45.4 minutes. The intraoperative fluoroscopy was 21- 60 times, with an average of 38.6 times. The volume of bone cement injected into each vertebral body was 2-9 mL, with an average of 4.3 mL. All patients were followed up 6-21 months, with an average of 11.3 months. X-ray film reexamination showed that the anterior height of the injured vertebra and Cobb angle at each time point after operation were significantly improved than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05). The distribution of bone cement was excellent in 40 vertebral bodies, good in 13 vertebral bodies, and poor in 1 vertebral body, and the excellent and good rate was 98.1% (53/54). The pain of all patients significantly relieved or disappeared, and the function improved. The VAS score and ODI at each time point after operation were significantly lower than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05).ConclusionFor the double noncontiguous thoracolumbar OVCF, the synchronous unilateral PKP has the advantages of simple puncture, less trauma, less intraoperative fluoroscopy, shorter operation time, satisfactory distribution of bone cement, etc. It can restore the height of the vertebral body, correct the kyphotic angle, significantly alleviate the pain, and improve the function.

    Release date:2021-09-28 03:00 Export PDF Favorites Scan
  • Effectiveness of robot assisted percutaneous kyphoplasty for treatment of single/double-segment osteoporotic vertebral compression fractures

    ObjectiveTo compare the effectiveness of robot assisted and C-arm assisted percutaneous kyphoplasty (PKP) in the treatment of single/double-segment osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 108 cases of single/double-segment OVCF who met the selection criteria between May 2018 and October 2019 were retrospectively analyzed. There were 65 cases of single-segment fractures, of which 38 cases underwent “TiRobot” orthopedic robot-assisted PKP (robot group), 27 cases underwent C-arm X-ray machine fluoroscopy-assisted PKP (C-arm group). There were 43 cases of double-segment fractures, including 21 cases in robot group and 22 cases in C-arm group. There was no significant difference in gender, age, T value of bone mineral density, fracture segment distribution, time from injury to operation, and preoperative visual analogue scale (VAS) score, vertebral kyphosis angle (VKA), and height of fractured vertebra (HFV) in the patients with single/double-segments fractures between robot group and C-arm group (P>0.05). The operation time, the fluoroscopy frequency of the surgeons and the patient, the fluoroscopy exposure time of the surgeons and the patient, the radiation dose of the C-arm; the VAS scores, VKA, HFV before operation, at 1 day and 6 months after operation; and the complications in the two groups were recorded and compared.ResultsAll patients underwent surgery successfully. The operation time of the single-segment robot group was significantly longer than that of the C-arm group (t=5.514, P=0.000), while the operation time of the double-segment robot group was not significantly different from that of the C-arm group (t=1.892, P=0.205). The single/double-segment robot group required three-dimensional scanning, so the fluoroscopy frequency, fluoroscopy exposure time, and radiation dose of C-arm received by the patient were significantly higher than those of the C-arm group (P<0.05); the fluoroscopy frequency and the fluoroscopy exposure time received by the surgeons were significantly less than those of the C-arm group (P<0.05). There was no infection, embolism, neurological injury, and adjacent segmental fractures. The single/double-segment robot group showed lower rate of cement leakage when compared with the C-arm group (P<0.05), all the cases of cement leakage happened outside the spinal canal. The VAS score, VKA, and HFV of the single/double-segment robot group and the C-arm group were significantly improved at 1 day and 6 months after operation (P<0.05), and the VAS score at 6 months after operation was further improved compared with that at 1 day after operation (P<0.05). At 1 day and 6 months after operation, there was no significant difference in VAS score between the single/double-segment robot group and the C-arm group (P>0.05). The VKA and HFV of robot group were significantly better than those of the C-arm group (P<0.05).ConclusionFor single/double-segment OVCF, robot assisted PKP has more advantages in correcting VKA and HFV, reducing fluoroscopy exposure of surgeons and bone cement leakage rate; C-arm assisted PKP has more advantages in reducing the operation time of single-segment OVCF and fluoroscopy exposure of patients during operation.

    Release date:2021-08-30 02:26 Export PDF Favorites Scan
  • PEDICLE SUBTRACTION OSTEOTOMY ASSISTED WITH ANTERIOR COLUMN RECONSTRUCTION FOR TREATMENT OF CHRONIC OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURE

    ObjectiveTo evaluate the effectiveness of pedicle subtraction osteotomy (PSO) assisted with anterior column reconstruction in the treatment of chronic osteoporotic vertebral compression fracture (OVCF). MethodsBetween January 2008 and October 2014, 11 cases of chronic OVCF were treated. There were 2 males and 9 females, aged 65-76 years (mean, 72.3 years). The vertebral compression fracture segment involved T11 in 2 cases, T12 in 2 cases, L1 in 4 cases, L2 in 2 cases, and L3 in 1 case. At preoperation, the Oswestry disability index (ODI) score was 31.1±10.2; kyphosis Cobb angle of fractured vertebrae was (36.5±10.2)° on the lateral X-ray films of the spine; and distance between C7 plumb vertical line (C7 PL) and sagittal vertical axis (SVA) of the S1 superior border was (5.2±2.5) cm. Six cases had spinal cord injury (SCI), including 4 cases of Frankel grade C and 2 cases of grade D. At last follow-up, ODI score, kyphosis Cobb angle of fractured vertebrae, and distance between C7 PL and SVA were recorded and compared with preoperative values. Postoperative Frankle scores were recorded in SCI cases. X-ray film and CT scan were taken to evaluate bone fusion at 12 months after operation. ResultsThe operation was completed successfully without serious complications. Nerve root radiation symptoms occurred in 2 cases undergoing lumbar PSO, which was relieved after conservative treatment. Cerebrospinal fluid leakage occurred in 1 case and was cured after 2 weeks. All cases were followed up 12-24 months (mean, 15.6 months). No internal fixation failure or pseudarthrosis was found postoperatively.Screw loosening was found in 1 case (2 screws of the upper level) and titanium Cage cutting vertebral body was found in 1 case. Bone fusion was obtained in all cases at 12 months after operation. At last follow-up, ODI score was significantly improved to 13.7±5.7(t=4.417, P=0.018), kyphosis Cobb angle of fractured vertebrae to (7.0±15.2)° (t=5.113, P=0.009), and the distance between C7 PL and SVA to (2.8±2.2) cm (t=3.285, P=0.032). In 6 SCI cases, Frankle grade was recovered to E (1 case), to D (1 case), and no improvement (2 cases) from C, and to E from D (2 cases). ConclusionPSO assisted anterior column reconstruction was an effective method in treatment of chronic OVCF.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF SECONDARY FRACTURE OF ADJACENT VERTEBRAL BODY AFTER PERCUTANEOUS VERTEBROPLASTY AND PERCUTANEOUS KYPHOPLASTY

    Objective To summarize the research progress of secondary fracture of adjacent vertebral body after percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP). Methods Recent literature concerning PVP and PKP was extensively reviewed and summarized. Results The main reasons of secondary fracture of adjacent vertebral body after PVP and PKP are the natural process of osteoporosis, the initial fracture type, the bone cement, the surgical approach, the bone mineral density, and other factors. Conclusion Secondary fracture of adjacent vertebral body after PVP and PKP is a challenge for the clinician, a variety of factors need to be suficiently considered and be confirmed by a lot of basic and clinical epidemiological studies.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • CORRELATION ANALYSIS OF CEMENT LEAKAGE WITH VOLUME RATIO OF INTRAVERTEBRAL BONE CEMENT TO VERTEBRAL BODY AND VERTEBRAL BODY WALL INCOMPETENCE IN PERCUTANEOUS VERTEBROPLASTY FOR OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURES

    ObjectiveTo investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). MethodsBetween March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the cl inical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was-3.8 (range, -6.7--2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. ResultsAll procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, and cement volume (P > 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P < 0.05) and vertebral body wall incompetence (P < 0.05) were the risk factors for occurrence of cement leakage. ConclusionThe volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence are risk factors of cement leakage in PVP for OVCF. Cement leakage is easy to occur in operative level with vertebral body wall incompetence and high volume ratio of intravertebral bone cement to vertebral body.

    Release date: Export PDF Favorites Scan
  • Comparison of refracture risk between sandwich vertebrae and ordinary adjacent vertebrae

    ObjectiveTo compare the refracture risk between sandwich vertebrae and ordinary adjacent vertebrae, and to explore the risk factors related to refracture.MethodsRetrospective analysis was performed on the data of patients who received percutaneous vertebral augmentation (PVA) and formed sandwich vertebrae between April 2015 and October 2019. Of them, 115 patients were enrolled in the study. There were 27 males and 88 females with an average age of 73.9 years (range, 53-89 years). Univariate analysis was performed to analyzed the patients’ general data, vertebral augmentation related indexes, and sandwich vertebrae related indexes. Survival analysis was performed for all untreated vertebrae at T4-L5 of the included patients at the vertebra-specific level, and risk curves of refracture probability of untreated vertebrae between sandwich vertebrae and ordinary adjacent vertebrae were compared. Cox’s proportional hazards regression model was used to analyze risk factors for refracture.ResultsThe 115 patients were followed up 12.6-65.9 months (mean, 36.2 months). Thirty-seven refractures involving 51 vertebral bodies occurred in 31 patients. The refracture rate of 27.0% (31/115) in patients with sandwich vertebrae was significantly higher than that of 15.2% (187/1228) in all patients who received PVA during the same period (χ2=10.638, P=0.001). Univariate analysis results showed that there was a significant difference in the number of augmented vertebrae between patients with and without refractures (Z=0.870, P=0.004). However, there was no significant difference in gender, age, body mass index, whether had clear causes of fracture, whether had dual energy X-ray absorptiometry testing, whether the sandwich vertebra generated through the same PVA, puncture method, method of PVA, number of PVA procedures, number of vertebrae with old fracture, whether complicated with spinal deformity, bone cement distribution, and kyphosis angle of sandwich vertebral area (P>0.05). Among the 1 293 untreated vertebrae, there were 136 sandwich vertebrae and 286 ordinary adjacent vertebrae. The refracture rate of sandwich vertebrae was 11.3% which was higher than that of ordinary adjacent vertebrae (6.3%)(χ2=4.668, P=0.031). The 1- and 5-year fracture-free probabilities were 0.90 and 0.87 for the sandwich vertebrae, and 0.95 and 0.93 for the ordinary adjacent vertebrae, respectively. There was a significant difference between the two risk curves of refracture (χ2=4.823, P=0.028). Cox’s proportional hazards regression model analysis results showed that the sandwich vertebrae, thoracolumbar location, the number of the augmented vertebrae, and the unilateral puncture were significant risk factors for refracture (P<0.05).ConclusionThe sandwich vertebrae has a higher risk of refracture when compared with the ordinary adjacent vertebrae, and its 1- and 5-year fracture-free probabilities are lower than those of the ordinary adjacent vertebrae. However, the 5-year fracture-free probability of sandwich vertebrae is still 0.87, so prophylactic enhancement is not recommended for all sandwich vertebrae. In addition, the sandwich vertebrae, thoracolumbar location, the number of the augmented vertebrae, and the unilateral puncture were important risk factors for refracture.

    Release date:2021-09-28 03:00 Export PDF Favorites Scan
  • COMPARISON OF EFFECTIVENESS BETWEEN PERCUTANEOUS VERTEBROPLASTY AND PERCUTANEOUS KYPHOPLASTY FOR TREATMENT OF OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURE WITH INTRAVERTEBRAL VACUUM CLEFT

    ObjectiveTo compare the clinical efficacy and safety between percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fracture (OVCF) with intravertebral vacuum cleft (IVC). MethodsBetween January 2010 and December 2013, 68 patients with single OVCF and IVC were treated, and the clinical data were retrospectively analyzed. Of 68 patients, 48 underwent PVP (PVP group) and 20 underwent PKP (PKP group). There was no significant difference in age, gender, disease duration, fracture level, bone mineral density (BMD), visual analogue scale (VAS), Oswestry disability index (ODI), and preoperative radiological parameters between 2 groups (P > 0.05). The intraoperative incidence of cement leakage, cement volume, and operative time were compared between 2 groups; VAS score was used for evaluation of back pain and ODI for evaluation of dysfunction; the incidence of adjacent vertebral fracture was observed within 2 years. The vertebral height and kyphotic angle were measured on X-ray films; the rate of vertebral compression (CR), reduction rate (RR), progressive height loss (PHL), reduction angle (RA), and progressive angle (PA) were calculated. ResultsThere was no significant difference in cement volume and the incidence of cement leakage between 2 groups (P > 0.05). The operative time in PVP group was shorter than that in PKP group, showing significant difference (t=-8.821, P=0.000). The mean follow-up time was 2.4 years (range, 2.0-3.1 years). The VAS scores and ODI were significantly reduced at 1 day, 1 year, and 2 years after operation when compared with preoperative scores (P < 0.05), but there was no significant difference between different time points after operation in 2 groups (P > 0.05). Adjacent vertebral fracture occurred in 5 cases (10.4%) of PVP group and in 2 cases (10.0%) of PKP group, showing no significant difference (χ2=0.003, P=0.963). BMD was significantly increased at 1 year and 2 years after operation when compared with preoperative BMD (P < 0.05), but no significant difference was found between 2 groups (t=0.463, P=0.642; t=0.465, P=0.646). The X-ray films showed that CR and kyphotic angle were significantly restored at immediate after operation in 2 groups (P < 0.05); but vertebral height and kyphotic angle gradually aggravated with time, showing significant difference between at immediate and at 1 and 2 years after operation (P < 0.05); there was no significant difference in CR and kyphotic angle between 2 groups at each time point (P > 0.05). RR, RA, PHL, and PA showed no significant difference between 2 groups (P > 0.05). ConclusionThere is similar clinical and radiological efficacy between PVP and PKP for treatment of OVCF with IVC. Re-collapse could happen after operation, so strict observation and follow-up are needed.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • CORRELATIVE FACTORS OF SECONDARY FRACTURE AFTER PERCUTANEOUS KYPHOPLASTY FOR OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURE

    Objective To analyse the correlative factors of secondary vertebral fracture after percutaneous kyphoplasty (PKP) in treatment of osteoporotic vertebral compression fracture (OVCF) at different levels (adjacent and/or nonadjacent levels). Methods Between December 2002 and May 2008, 84 patients with OVCF were treated with PKP, and the cl inical data were analysed retrospectively. There were 11 males and 73 females with an average age of 70.1 years (range, 55-90 years). All patients were followed up 24-96 months (mean, 38 months). Secondary vertebral fracture occurred in 12 cases at 3-52 months after PKP (secondary fracture group), no secondary fracture in 72 cases (control group) at over 24months. The preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway (uni- or bilateral puncture), age, gender, number of fracture segment, and cement intradiscal leakage were compared between 2 groups to find correlative factors of secondary vertebral fractures. Results There was no significant difference in preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway, age, gender, and number of fracture segment between 2 groups (P gt; 0.05). But the incidence of cement intradiscal leakage was much higher in secondary fracture group than in control group (χ2=5.294, P=0.032). Conclusion Cement intradiscal leakage may be the correlative factor of secondary vertebral fracture after PKP in OVCF.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • Risk factors analysis of adjacent fractures after percutaneous vertebroplasty for osteoporotic vertebral compression fracture

    ObjectiveTo investigate the risk factors of adjacent fractures after percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF).MethodsA total of 2 216 patients who received PVP due to symptomatic OVCF between January 2014 and January 2017 and met the selection criteria were selected as study subjects. The clinical data was collected, including gender, age, height, body mass, history of smoking and drinking, whether the combination of hypertension, diabetes, coronary arteriosclerosis, chronic obstructive pulmonary disease (COPD), bone mineral density, the number of fractured vertebrae, the amount of cement injected into single vertebra, the cement leakage, and whether regular exercise after operation, whether regular anti-osteoporosis treatment after operation. Firstly, single factor analysis was performed on the observed indicators to preliminarily screen the influencing factors of adjacent fractures after PVP. Then, logistic regression analysis was carried out for relevant indicators with statistical significance to screen risk factors.ResultsAll patients were followed up 12-24 months, with an average of 15.8 months. Among them, 227 patients (10.24%) had adjacent fractures. The univariate analysis showed that there were significant differences between the fracture group and non-fracture group in age, gender, preoperative bone density, history of smoking and drinking, COPD, the number of fractured vertebrae and the amount of bone cement injected into the single vertebra, as well as regular exercise after operation, regular anti-osteoporosis treatment after operation (P<0.05). Further multivariate logistic regression analysis showed that the elderly and female, history of smoking, irregular exercise after operation, irregular anti-osteoporosis treatment after operation, low preoperative bone density, large number of fractured vertebrae, and small amount of bone cement injected into the single vertebra were risk factors for adjacent fractures after PVP in OVCF patients (P<0.05).ConclusionThe risk of adjacent fractures after PVP increases in elderly, female patients with low preoperative bone mineral density, large number of fractured vertebrae, and insufficient bone cement injection. The patients need to quit smoking, regular exercise, and anti-osteoporosis treatment after PVP.

    Release date:2021-01-29 03:56 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content