【Abstract】Objective To explore the effect against gastric cancer induced by Newcastle disease virus modified autologous tumor vaccine (NDV-ATV)pulsed dendritic cells(DCs). Methods The Newcastle disease virus infected the gastric cancer lines (MNK45) and was lost its activity. Peripheral blood mononuclear cell (PBMC) were cultured under condition of recombinant human granulocyte macrophage-colony stimulating factor (1 000 u/ml)+IL-4(1 000 u/ml) + TNF-α(100 ng/ml). The tumor antigen specific cytotoxic T lymphocytes (CTL) was generated from activated autologous T cell by the Newcastle disease virus infected the MNK45 pulsed DC. And Cyto Tox 96TM in vitro assayed the cytotoxicity of CTL to MNK45. Thawed gastric cancer cell antigen were used as control in these experiments. Results The killing rate of MNK45 by antigen specific CTL reached (90.15±9.82)%, which was nearly twice as high as that of control(60.57±5.74)%. The CTL had much higher cytotoxicity to different differentiated type of gastric cancer cells such as MGC803〔(52.23±6.45)% 〕 and SGC7901〔 (61.75±8.84)%〕, as compared with LOVO〔(9.11±3.42)%〕 and HepG2 〔 (8.30±3.12)%〕tumor cells(P<0.05). Conclusion Efficient and specific of against gastric cancer immunoreaction can be induced in virtue of NDV-ATV pulsed DCs, NDV-ATV loaded DCs might provide a new kind of theraputic means for gastric cancer.
ObjectiveTo explore the antitumor effect of tumor vaccine fused from dendritic cells (DC) and Walker-256 cancer cells on implanted liver cancer in rats and the related mechanism of inhibition for tumor angiogenesis. MethodsWalker-256 cancer cells and mature DC were fused by 50% polyethylene glycol method for preparation of DC-Walker-256 fusion vaccines. Implanted liver cancer models were established through operations on healthy male SD rats at the age of 6-8 weeks. All the rats were divided into four groups, and rats in each group were injected subcutanely with fusion vaccine (group), mixed cultured cells (group), simple DC (group), and PBS (blank control group), respectively. On 28 d after making model, the rats were put to death, the tumor was observed and pathological essays were prepared. All rats’ spleens were collected and prepared into lymphocyte to detect antigenic specificity cytotoxic T lymphocyte (CTL) by enzymelinked immunosorbent spot (ELISPOT) method. The expressions of VEGF, ANG-1, ANG-2, and MVD were detected by immunohistochemistry. ResultsThe numbers of rats survived in the fusion vaccine group, mixed culture cells group, simple DC group, and blank control group was 8, 5, 6, and 3, respectively. The rats in the other three groups except for fusion vaccine group were manifested as inaction, anorexia, and gloomy fur in some degree as well as ascites. The tumorigenesis was found in all survival rats except for two in the fusion vaccine group. The weight of liver tumors of rats in the fusion vaccine group 〔(32.4±9.2) g〕 was significantly lighter than that in the mixed culture cells group 〔(67.3±5.1) g, P=0.031〕, simple DC group 〔(75.0±8.3) g, P=0.019〕, and blank control group 〔(86.6±10.5) g, P=0.008〕, respectively. The number of tumorspecific CTL of rats in the fusion vaccine group was also significantly higher than that in the other three groups (P=0.019, P=0.025, and P=0.001, respectively). The MVD of tumor tissue in the fusion vaccine group was (24.12±2.32) vessels/HP, which was significantly lower than that in the mixed culture cells group 〔(40.34±1.29) vessels/HP, P=0.025〕, simple DC group 〔(42.36±3.16) vessels/HP, P=0.035〕, and blank control group 〔(56.48±5.16) vessels/HP, P=0.006〕, respectively. The MVD of tumor tissue in the mixed cultured cells group and simple DC group was similar (P=0.165), however, which was significantly lower than that in the blank control group (P=0.040 and P=0.043). The positive rate of VEGFA protein expression was 23.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (42.5%, P=0.031), simple DC group (61.3%, P=0.019), and blank control group (89.6%, P=0.003), respectively. The positive rate of VEGF-A protein expression in the mixed cultured cells and simple DC groups was similar (P=0.089), however, which was significantly lower than that in the blank control group (P=0.027 and P=0.038). The positive rate of ANG-1 protein expression in the fusion vaccine group (43.2%) was not different from that in the mixed culture cells group (46.3%, P=0.292), simple DC group (51.3%, P=0.183), or blank control group (49.6%, P=0.179), respectively, and the difference of pairwise comparison in latter three groups was not significant (P=0.242, P=0.347, and P=0.182). The positive rate of ANG2 protein expression was 19.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (62.3%, P=0.007), simple DC group (67.3%, P=0.005), and blank control group (71.6%, P=0.004), respectively, however, the difference of pairwise comparison in latter three groups was not significant (P=0.634, P=0.483, and P=0.379). ConclusionFused vaccine can induce CD8+ CTL aiming at tumor cells and establish the effective antitumor immunity in vivo and also downregulate the level of VEGF and ANG-2 to suppress tumor angiogenesis and thereby achieve the purpose of curing tumor.
Objective To investigate the effects of nuclear factor kappa B decoy oligodeoxynucleotides ( NF-κB decoy ODN) transfection on biological characteristics of mature dendritic cells ( mDCs) in mice. Methods Immature DCs were harvested from Balb / c mice bone marrow, followed by the incubation with antigen OVA and LPS, and mature DCs were evaluated by the expressions of CD11c and MHC-Ⅱ detected by FACS. Mature DCs were transfected with NF-κB decoy ODN and the changes of NF-κB activity after the transfection were detected by EMSA. The expressions of the costimulatory molecules( CD40,CD80 and CD86) on DCs were detected by FACS and the proliferation of T cells was tested by mixed lymphocyte reaction( MLR) . Results The mature DCs were cultured successfully. The NF-κB activity of NF-κB decoy ODN transfected DCs was decreased significantly( P lt; 0. 05) . There was no difference in the expressions of CD40 and CD80, but the expression of CD86 was decreased significantly in NF-κB decoy ODN transfection group( P lt; 0. 05) . MLR test showed that the proliferation of T lymphocyte cells was inhibited by NF-κB decoy ODN transfected DCs, but was stimulated bly by the DCs of other groups. Conclusions Mature DCs transfected with NF-κB decoy ODN could inhibit the proliferation and activation of antigenspecical T cells, which was probably related to the down-regulation of CD86 on DCs. This modified DCs might be a promising vaccine for the treatment of asthma in the future.
Objective By using small interfering RNAs ( siRNAs) specific for spleen tyrosine kinase ( Syk) , to evaluate the role of Syk in maturation of bone marrow-derived dendritic cells. Methods The fragments of 21-23 bp siRNAs specific for mice Syk were chemo synthesized and transfected into the asthmatic murine bone marrow-derived dendritic cells ( BMDCs) by Lipofectamine 2000 transfection system for 48 hours. Then BMDCs were co-cultured with T cells from the normal mice spleen for 48 hours. The cytokines including IL-4, IL-13, IL-2 and INF-γin supernatant were detect by ELISA. The expression of Syk protein was measured by Western Blot to determine whether the Syk gene was silenced. Results The expression of Syk protein was obviously decreased in the siRNA-interference group. The secretions of IL-4 and IL-13 were significantly inhibited by siRNA interference ( P lt; 0. 05) , but the secretions of IL-2 and INF-γwere not interfered signficantly ( P gt;0. 05) . Conclusion Syk specific siRNA fragments can block the antigen presentation function of dendritic cells and block the activation and differentiation of T cells.
Objective Respiratory syncytial virus ( RSV) is a primary cause of lower respiratory tract infections in children, and is also the cause for the development of asthma primarily in infants. However,the immunological mechanisms by which RSV enhances allergic sensitization and asthma remain unclear. The aimof this study was to examine the influence of RSV-infected airway epithelial cells on the activation and functions of rat myeloid dendritic cells ( mDCs) . Methods Rat airway epithelial cells ( RAECs) were infected by RSV. Then RSV-infected RAECs were co-cultured with rat mDCs, and the expression of cytokine and maturation markers on mDCs were examined by real time PCR and flow cytometry. To confirm this functional mDC maturation, allergenic mixed lymphocyte reaction ( MLR) were performed. Results Wefound that functional maturation of mDCs was induced by RSV-treated RAECs, as shown by their enhanced levels of OX40L and thymus- and activation-regulated chemokine ( TARC) mRNAs, which increased the expressions of major histocompatibility complex II ( MHCII) and CD86 costimulatorymolecules and promotedT-cell proliferation in mixed lymphocyte reactions. Conclusion Our results suggest that RSV-infected epithelial cells promote the maturation of mDCs that might support Th2 cell polarization and contribute to the pathogenesis of asthma.
Objective To study the advances in the relationship between the number of infiltrating dendritic cells and the postoperative prognosis of digestive malignant tumor. MethodsThe literature in recent years on the relationship between the number of infiltrating dendritic cells and the postoperative prognosis of digestive malignant tumor was reviewed.ResultsThe number of infiltrating dendritic cells among esophageal cancer,and gastric carcinoma,colonic cancer and pancreatic cancer was associated with a better prognosis.Conclusion The population density of dendritic cells among the malignant tissue could be regarded as an independent indicator in estimating the postoperative prognosis of malignant tumor.
ObjectiveTo explore the influence of miRNA-155/PU.1 signaling pathway blockade on bone marrow-derived dendritic cells (DCs) maturation and immune function of rat small intestinal transplantation. MethodsThe DCs were induced by adherent culture.The critical transcription factor gene PU.1 was designed and PU.1 siRNA was synthe-sized.The DCs were transfected by liposome transfection and a pair of PU.1 siRNA was screened according to the high silencing efficiency.The expressions of DCs surface markers CD80, CD86, and MHC-Ⅱamong three groups (PU.1 silent group, negative control group, and control group) were analyzed by flow cytometry.The IL-10 and IL-12p70 secretion levels in the supernatant were tested by ELISA method.The allogeneic T lymphocyte proliferation was tested by mixed lymphocyte reaction.The transfected cells were intravenously injected into the recipient rat on day 7 before intestinal transplantation.The survival conditions as well as pathological changes were observed in each group recipients. Results①The surface molecules CD80, CD86, and MHC-Ⅱin the PU.1 silent group were (27.0±5.6)%, (23.6±4.8)%, and (36.8±6.8)%, respectively; versus (74.0±9.4)%, (76.5±8.7)%, and (87.8±11.3)% in the negative control group, respectively, which were significantly lower in former and showing an in creased trend (P < 0.05).②Compared with the negative control group, IL-10 secretion level was significantly increased (P < 0.05), IL-12p70 secretion level significantly decreased (P < 0.05) in the PU.1 silent group.③The proliferation of T lymphocytes in the PU.1 silent group was significantly lower than that in the negative control group (P < 0.05).④When the transfected DCs were injected into the intestinal transplantation rats on day 7 before operation, the survival time was (14.3±3.3) d, (7.8±1.5) d, and (8.0±2.5) d in the PU.1 silent group, negative control group, and control group, respectively, which in the PU.1 silent group were significantly longer than that in the other two groups (P < 0.05), and the graft pathology showed that there were mild intestinal tissue damage, lymphocyte infiltration or villus edema in the PU.1 silent group. ConclusionmiRNA-155/PU.1 signaling pathway blockade could reduce DCs maturation and induce receptor-specific immune tolerance, which are proved both in vivo and in vitro.
ObjectiveTo review the role of dendritic cells (DC) in immune metabolism of rheumatoid arthritis (RA). MethodsLiterature on the role of DC in the immune metabolism of RA was extensively reviewed in recent years, and the metabolic characteristics of RA, the role of DC in RA, the correlation between the immune metabolism of DC and pathogenesis of RA, and the treatment were summarized and analyzed. Results DC promotes the progression of RA under hypoxia, increased glycolysis, inhibition of oxidative phosphorylation, and decreased lipid metabolism. Moreover, many DCs (especially conventional DC and monocyte-derived DC) have different functions and phenotypic characteristics in RA, which are closely related to the occurrence and development of RA. Conclusion DC plays an important role in the immune metabolism of RA, and immunometabolism therapy based on DC can provide targeted therapy for the treatment of RA.