ObjectiveTo establish 16HBE cell lines stably expressing glutathione S-transferase mu 5 (GSTM5) gene, and explore the mechanism of GSTM5 nuclear translocation. MethodsRecombinant lentiviral expression vector containing GSTM5 gene was constructed and lentivirus was produced. After lentivirus infection of 16HBE cells, 16HBE-GSTM5 cell lines were obtained by screening with puromycin. Expression of GSTM5 in different cells was examined by RT-qPCR and Western blot. The nuclear translocation of GSTM5 was observed by confocal laser scanning microscope, after the 16HBE-GSTM5 cell lines were treated with tumor necrosis factor-α (TNF-α; 10 ng/ml) for 0.5 hour. ResultsLentiviral expression plasmids, PLVX-puro-3*flag-SBP-GSTM5-C and PLVX-puro-GSTM5-SBP-3*flag-N, were constructed and lentiviral particles were successfully packed. After infected with lentivirus and screened by puromycin, two cell lines, 16HBE-GSTM5-SBP-3*flag-N and 16HBE-3*flag-SBP-GSTM5-C, were obtained. GSTM5 expression in these two cell lines was significantly higher compared with the control group and parental cells. After treated with TNF-α for 0.5 hour, the nuclear translocation of GSTM5 in 16HBE-GSTM5-SBP-3*flag-N was much more obviously than that in 16HBE-3*flag-SBP-GSTM5-C. ConclusionThe N-terminal region of GSTM5 is critical for nuclear translocation induced by TNF-α, which is mediated by a novel and non-classical nuclear localization signal.
ObjectiveTo construct a lentiviral vector carrying rat sirt1 gene and observe the expression of sirt1 in retinal ganglion cell (RGC) of rat. MethodsRat sirt1 cDNA was inserted into pLV5 vector. After identification by sequencing analysis and PCR, the recombinant sirt1expressinglentivirus vector was packaged by cotransfecting 293T cells with packaged plasmid.Then pLV5-sirt1 was used to infect the cultured Sprague-Dawley rat RGC cell in vitro.The expressions of sirt1 protein and mRNA in infected rat RGC were detected by quantitative real-time PCR and Western blot. ResultsThe sirt1 expression vector pLV5 was successful constructed and sequence was proved to be correct. The expression of sirt1 protein and mRNA in RGC was significantly increased than that in cells infected with control lentiviruses(P < 0.05). ConclusionWe have successful constructed a sirt1 expression lentivirus vector pLV5-sirt1 and it can increase the expression of sirt1 protein and mRNA in the rat retinal ganglion cells.
目的 构建含小鼠血管内皮生长因子(mVEGF)的重组慢病毒表达载体,包装成病毒颗粒后感染NS-1小鼠骨髓瘤细胞株,以便进一步探索VEGF在骨髓瘤病理生理机制中的作用。 方法 聚合酶链反应法扩增mVEGF基因,克隆入含嘌呤霉素抗性的pCDH慢病毒表达载体,构建出表达mVEGF的慢病毒表达载体pCDH-mVEGF;采用磷酸钙法将慢病毒系统三质粒pCDH-mVEGF、psPAX2、pMD2.G共转染293FT细胞包装病毒,分别收集转染后48 h和72 h病毒上清并感染靶细胞NS-1,初次感染72 h后开始采用嘌呤霉素筛选稳定株,筛选2周后采用ELISA法检测稳定株细胞培养上清中mVEGF的表达,建立出稳定高表达mVEGF的NS-1小鼠骨髓瘤细胞株。 结果 成功构建重组慢病毒表达质粒pCDH-mVEGF,并包装成慢病毒颗粒,感染NS-1细胞株后获得靶基因的稳定高表达。 结论 成功构建出含mVEGF的慢病毒表达载体pCDH-mVEGF,慢病毒系统能有效介导目的基因在NS-1小鼠骨髓瘤细胞株中稳定表达,病毒包装成功并能有效感染NS-1细胞,为进一步探索VEGF在骨髓瘤病理生理机制中的作用奠定了基础。
This research aims to construct a lentiviral expression vector carrying the extracelluar domain (ED) of human hepatocyte growth factor receptor (C-Met), and to express it in transfected 293T cells. The extracellular domain of C-Met was amplified by RT-PCR, ligated with lentiviral expression vector p RRL-CMV-ED, and then expressed in 293T cell line. The expressed protein was purified and identified by RT-PCR and Western blot. The enzyme digestion and sequence analysis showed that the lentiviral expression vector p RRL-CMV-ED was constructed correctly. The size of amplified genes was about 2 700 bp. The purified protein with Ni-affinity column was about 105 kD analyzed by SDS-PAGE. The Western blot and ELISA results showed that the expressed protein which could bind to HGF specifically was the extracelluar domain of human hepatocyte growth factor receptor. This research may lay a foundation for further study of anti-C-MET monoclonal antibody and neutralizing antibody.
ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.
Objective To observe the influences of uncoupling protein 2 (UCP-2) rs660339 variants transfection on cell proliferation and apoptosis of human umbilical vein endothelial cell (HUVEC). Methods Two UCP-2 green fluorescent protein (GFP) lentivirus constructs were created with the rs660339 locus carried C or T (UCP-2C or UCP-2T), respectively. HUVEC were cultured after lentiviral infection of UCP-2C or UCP-2T. The expression of UCP-2C or UCP-2T was detected with real time polymerase chain reaction. Cell proliferation and cell apoptosis were compared among negative control (NC) group, UCP-2T group and UCP-2C group using CCK-8 cell viability and flow cytometry. Western blot and immunostaining were employed to examine the expression of Bcl-2 gene. Results The lentivirus constructs were successfully created. >80% of the transfected cells were found to express GFP under fluorescent microscope. The mRNA levels of UCP-2 gene were significantly increased (F=29.183,P=0.001) in the UCP-2T group and UCP-2C group. The CCK-8 assay revealed that on day two (F=15.970,P=0.004), day three (F=16.738,P=0.004), day four (F=5.414,P=0.045) post-infection, UCP-2T and UCP-2C group showed significantly greater proliferation than the NC cells. The apoptotic rate in the UCP-2T and UCP-2C group was significantly lower than NC group (F=277.138,P=0.000), and the apoptotic rate of UCP-2T was significantly lower than that of UCP-2C (P=0.003). The protein levels of Bcl-2 in the UCP-2T and UCP-2C group were significantly greater than that in the NC group (F=425.679,P=0.000), and the Bcl-2 expression of UCP-2T was greater than that of UCP-2C (P=0.002). The Bcl-2 density in the UCP-2T and UCP-2C group were greater than that in the NC group (F=11.827,P=0.008), while there was no difference between UCP-2T and UCP-2C group (P=0.404). Conclusion The variants of UCP-2 rs660339 may influence HUVEC proliferation and apoptosis, and UCP-2T showed a stronger effect of inhibiting apoptosis than UCP-2C.
Objective Biliary epithelial cell (BEC) proliferated actively induced by ischemia-type biliary lesion (ITBL), which played an important role in the development of biliary complication after orthortopic liver transplantation (OLT). The aims of this study is to provide novel method to protect the liver endured cold preservation and reperfusion injury (CPRI) and reduce posttransplant biliary complication, and explore its possible mechanism.Methods Based on constructed OLT models for studying ITBL, the hepatic oval cell (HOC) or the IL-13 genemodified HOC to the portal vein of the recipient 〔OLT+HOC group and OLT+IL-13· HOC group〕 were-transfused, then the pathology change, the liver function and the expressions of the α-smooth muscle actin (αSMA) and Heme oxygenase-1 (HO-1) mRNA of the transplanted liver of CPRI were observed, the proliferation of BEC and survival rate of the recipients were also observed. Results The BEC injury was showed in grafts with prolonged ischemia time, characterized by induction of BEC proliferation, liver function injury and cholestasis sign reflecting the increase of serum ALT, AST and TBIL. The OLT+IL-13·HOC group had better results than OLT and OLT+HOC group, which indicated the OLT+IL-13·HOC group had low level of expression α-SMA (after operation 7 d, Plt;0.05) and proliferation of BEC (after operation 3 d, Plt;0.05). The expressions of HO-1 mRNA were higher in OLT+IL-13·HOC group than in other groups. The survival rate of OLT group was lower than that of the OLT+IL-13·HOC group and sham operation group (Plt;0.05).Conclusion High expression level of IL-13 in recipient rats could promote the expression of HO-1 mRNA in transplant liver, and profit to protection donor liver, and recover of the liver function after liver transplantation. It perhaps is the mechanism of protective effect of IL-13 on graft that stimulate the expression of HO-1 mRNA significantly.
ObjectiveTo explore the effects on osteogenic differentiation of adipose derived stem cells (ADSCs) by simultaneously down-regulating Noggin combined with up-regulating bone morphogenetic protein 14 (BMP-14) in vitro. MethodsPrimary ADSCs were isolated and expanded in vitro from 5 Sprague Dawley rats (weighing, 250-300 g). ADSCs were transfected with lentiviral (Lv)-enhanced green fluorescent protein in group A (control group), with Lv-BMP-14 in group B, and with Lv-BMP-14 and Lv-Noggin shRNA in group C. BMP-14 and osteogenesis-related genes[collagen type I, alkaline phosphatase (ALP), and osteocalcin (OCN)] mRNA expression levels were detected by real time fluorescence quantitative PCR at 3, 7, and 14 days after transfection. Alizarin red staining for calcium nodules was also employed to assess the osteogenic ability of co-transfected ADSCs. ResultsAt 3 days after transfection, no significant difference was found in BMP-14 mRNA expression among groups P>0.05). At 7 and 14 days after transfection, BMP-14 mRNA expression was significantly higher in group C than groups A and B, and in group B than group A (P<0.05). At 3 days after transfection, collagen type I, ALP, and OCN mRNA expressions of group C were significantly higher than those of groups A and B (P<0.05), but no significant difference was shown between groups A and B P>0.05). At 7 and 14 days, collagen type I, ALP, and OCN mRNA expressions were higher in group C than groups A and B, and in group B than group A, showing significant difference (P<0.05) except collagen type I mRNA expression at 7 days between groups A and B P>0.05). The results of alizarin red staining showed that the amount of calcium nodules presented an increased tendency in the order of group A, group B, and group C. ConclusionBMP-14 is capable of enhancing osteogenic differentiation of ADSCs. A combination of inhibiting Noggin gene expression and enhancing BMP-14 gene expression in ADSCs can significantly strengthen osteogenic differentiation capability, showing significant synergistic effect.
Objective To study the interferencing and anti-tumor effects of lentiviral vector of siRNA targeting IGF1R and EGFR gene of the liver cancer cell. Methods The complementary DNA containing both sense and antisense Oligo DNA of the targeting sequence was designed, synthesized and connected to the pLVTHM vector, named pLVTHM-IGF1R, into whom the EGFR-siRNA expression frame containing H1 promotor synthesized by RT-PCR was cloned to generate pLVTHM-IGF1R-EGFR-siRNA. The 293T cells were cotransfected by 3 plasmids of pLVTHM-IGF1R-EGFR-siRNA, psPAX2 and pMD2G to enclose LVTHM-IGF1R-EGFR-siRNA, which was amplified in large amount and purified by caesium chloride density gradient centrifugation for measurement of virus titer. SMMC7721 cells infected by LVTHM-IGF1R-EGFR-siRNA were infection group, the untreated SMMC7721 cells and blank vector plasmid LVTHM were two control groups (SMMC7721 cell group and blank vector group). The effect of LVTHM-IGF1R-EGFR-siRNA on IGF1R and EGFR expressions of SMMC7721 cells were detected by RT-PCR and Western blot. The antitumor potential of LVTHM-IGF1R-EGFR-siRNA to SMMC7721 cells was evaluated by Cell Counting Kit-8 assay for cell growth and TUNEL for apoptosis respectively. Results LVTHM-IGF1R-EGFR-siRNA was constructed successfully. Functional pfu titers of LVTHM-IGF1R-EGFR-siRNA was 4.58×109 pfu/ml. Protein and mRNA expression of IGF1R and EGFR of infection group were less than those of blank vector group and SMMC7721 cell group (P<0.05), LVTHM-IGF1R-EGFR-siRNA was more effective to inhibit the proliferation and promote apoptosis of SMMC7721 cells (P<0.05). Conclusion LVTHM-IGF1R-EGFR-siRNA expressing IGF1R-EGFR-siRNA can inhibit the expression of IGF1R and EGFR, and may be used for further investigation of gene therapy of liver cancer.
ObjectiveTo obtain rat hair follicle stem cells (rHFSCs) which can constantly and highly express vascular endothelial growth factor 165 (VEGF165), and to observe the expression of VEGF165 gene in rat HFSCs. MethodsThe cirri skin of 1-week-old Sprague Dawley rat was harvested and digested by using combination of Dispase and type IV collagenases. The bulge was isolated under microscope. The rHFSCs were cultured by tissue block method. After purified by rapid adhering on collagen type IV, the growth curve of different generations rHFSCs was drawn. The cells were identified by immunofluorescence staining and real time quantitative PCR (RT-qPCR) analysis that tested the expression level of correlated genes. Lentivirus of pLV-internal ribosome entry site (IRES)-VEGF165-enhanced green fluorescent protein (EGFP) (experimental group) and pLV-IRES-EGFP empty vector (control group) was packaged by calcium transfected method and the rHFSCs were transfected. The green fluorescent protein expression was observed by inverted fluorescence microscope, and VEGF165 mRNA and protein expressions were detected using RT-PCR and Western blot. ResultsThe rHFSCs which were isolated, cultured, and purified were like the "slabstone", and had strong adhesion ability and colony formation ability. The purified cells were in latent growth phase at 2-3 days; they were in exponential growth phase at 5-6 days. The expressions of cytokeration 15 (CK15), integrin α6, and integrin β1 (markers of HFSCs) were positive by immunocytochemistry. The RT-qPCR analysis showed that CK15, CK19, integrin α6, and integrin β1 expressed highly, but CD34 (a marker of epidermal stem cells) and CK10 (a marker of keratinocyte) expressed lowly. After 14 days, the transfection efficiency was up to 85.76%±1.91%. RT-PCR analysis and Western blot showed that VEGF165 mRNA and protein expressions were positive in experimental group, and were negative in control group. ConclusionThe rHFSCs with high purity and strong proliferation ability can be obtained by using microscope combined with tissue cultivation and rapid cell adhesion on collagen type IV. The rHFSCs with high expression of VEGF165 can be successfully obtained by lentiviral transfection. This method provides good seeding cells for tissue engineering to construct artificial hair follicles, blood vessels, and skins.