Abstract: Diseases prognosis is often influenced by multiple factors, and some intricate non-linear relationships exist among those factors. Artificial neural network (ANN), an artificial intelligence model, simulates the work mode of biological neurons and has a b capability to analyze multi-factor non-linear relationships. In recent years, ANN is increasingly applied in clinical medical fields, especially for the prediction of disease prognosis. This article focuses on the basic principles of ANN and its application in disease prognosis research.
OBJECTIVE: To explore the kidney anatomic structure of banna minipig inbred-lines, and to provide data for kidney xenotransplantation. METHODS: The fresh and infused kidneys of banna minipig (including the vessel and the ureter) were checked by anatomic microscope and vernier caliper in original location and away body. The tissue structure was observed by HE stain. RESULTS: The structure of kidney of banna minipig inbred-lines (including the vessel and the ureter) are similar to that of human being. The fascia propria of kidney is divided into three layers including capsula fibrosa, capsula adipose and fascia renalis. The thickness of cortex renalis is (20.0 +/- 2.4) mm. The average diameter of renal artery is 5.1 mm and is similar to that of human being. All the kidneys of banna minipig inbred-lines have a single branch renal artery. The diameters of left and right ureters are 5.1 mm and 4.7 mm, respectively. CONCLUSION: The kidney of banna minipig inbred-lines is an ideal replacement of human kidney for xenotransplantation.
Objective To observe the clinical effect of intravenous thrombolytic therapy for central retinal artery occlusion (CRAO) with poor effect after the treatment of arterial thrombolytic therapy. Methods Twenty-four CRAO patients (24 eyes) with poor effect after the treatment of arterial thrombolytic therapy were enrolled in this study. There were 11 males and 13 females. The age was ranged from 35 to 80 years, with the mean age of (56.7±15.6) years. There were 11 right eyes and 13 left eyes. The visual acuity was tested by standard visual acuity chart. The arm-retinal circulation time (A-Rct) and the filling time of retinal artery and its branches (FT) were detected by fluorescein fundus angiography (FFA). The visual acuity was ranged from light sensation to 0.5, with the average of 0.04±0.012. The A-Rct was ranged from 18.0 s to 35.0 s, with the mean of (29.7±5.8) s. The FT was ranged from 4.0 s to 16.0 s, with the mean of (12.9±2.3) s. All patients were treated with urokinase intravenous thrombolytic therapy. The dosage of urokinase was 3000 U/kg, 2 times/d, adding 250 ml of 0.9% sodium chloride intravenous drip, 2 times between 8 - 10 h, and continuous treatment of FFA after 5 days. Comparative analysis was performed on the visual acuity of the patients before and after treatment, and the changes of A-Rct and FT. Results After intravenous thrombolytic therapy, the A-Rct was ranged from 16.0 s to 34.0 s, with the mean of (22.4±5.5) s. Among 24 eyes, the A-Rct was 27.0 - 34.0 s in 4 eyes (16.67%), 18.0 - 26.0 s in 11 eyes (45.83%); 16.0 - 17.0 s in 9 eyes (37.50%). The FT was ranged from 2.4 s to 16.0 s, with the mean of (7.4±2.6) s. Compared with before intravenous thrombolytic therapy, the A-Rct was shortened by 7.3 s and the FT was shortened by 5.5 s with the significant differences (χ2=24.6, 24.9; P<0.01). After intravenous thrombolytic therapy, the visual acuity was ranged from light sensation to 0.6, with the average of 0.08±0.011. There were 1 eye with vision of light perception (4.17%), 8 eyes with hand movement/20 cm (33.33%), 11 eyes with 0.02 - 0.05 (45.83%), 2 eyes with 0.1 - 0.2 (8.33%), 1 eye with 0.5 (4.17%) and 1 eye with 0.6 (4.17%). The visual acuity was improved in 19 eyes (79.17%). The difference of visual acuity before and after intravenous thrombolytic therapy was significant (χ2=7.99, P<0.05). There was no local and systemic adverse effects during and after treatment. Conclusion Intravenous thrombolytic therapy for CRAO with poor effect after the treatment of arterial thrombolytic therapy can further improve the circulation of retinal artery and visual acuity.
Objective To clarify the relationship between inhibition of proliferation and cxpression of Ki-67 in cultured human retinal pigment epithelial(RPE) cells. Methods The cultured human RPE cells were treated with daunoblastina at a dose of 180 mu;g/L for 12h.Twenty-four hours later,DNA inhibiting rate was studied by using tritium-labelled thymidine deoxyribose(3H-TdR)incorporation assay.The expression of Ki-67 was evaluated by immunocytochemical staining technique and image analysis system.Flow cytometry was used to analyse cell cycle. Results DNA inhibiting rate was directly proportional to the dosage of daunoblastina.The proportion of the cells positive staining to Ki-67 in the control and the daunoblastina-treated group were 89.3% and 45.6%(Plt;0. 01),and the integral optical density values for expression of Ki-67 in the two groups were 68.1plusmn;6.2 and 27.3plusmn;5.5(Plt;0.01),respectively.The percen tage of cells in G2 phase of cell cycle increased from 8.9% to 29.5%. Conclusion G2 block was induced and poliferation was inhibited by daunoblastina in cultured human RPE cells.There is a relatively good correlation between Ki-67 immunostaining and inhibition of RPE cell proliferation. (Chin J Ocul Fundus Dis,2000,16:1-70)
OBJECTIVE: To provide anatomy basis for a free latissimus dorsal muscular flap with the sensate nerve. METHODS: The structure of back and lateral chest area were dissected and the origin, alignment and distribution of the intercostals nerve within the area of latissimus dorsal muscular flap were observed in 40 adult cadaver specimens. RESULTS: The 5th to 10th lateral posterior branches of the thoracic nerve pierced from respective intercostal area near the axial anterior line and run a long distance in deep fascia. They distributed mainly in lateral latissimus skin outside the scapular line and anastomosed with the lower branch near the scapular line. Among these branchs, the 6th to 8th branches had a longer nerve distribution respectively and the pedicle of nerve and artery was parallel and long. CONCLUSION: It is possible to design a sensate latissimus dorsal muscular flap with the 6th to 8th lateral posterior branch of the intercostal nerve.
Objective To investigate the anatomic foundation of using main branch of posterior femoral nerve to restore the sensation function of distal basedsural island flap. Methods Thirty cases of adult human cadaver legs fixed by 4%formaldehyde were used. Anatomical investigation of the posterior femoral nerves of lower legs was conducted under surgical microscope to observe their distribution, branches and their relationship with small saphenous vein. Nerve brancheswith diameter more than 0.1 mm were dissected and accounted during observation.The length and diameter of the nerves were measured. Results The main branch of posterior femoral nerve ran downwards from popliteal fossa within superficial fascia along with small saphenous vein. 70% of the main branch of the posterior femoral nerves lay medially to small saphenous vein, and 30% laterally. They wereclassified into 3 types according to their distribution in lower legs: typeⅠ (33.3%) innervated the upper 1/4 region of lower leg (region Ⅰ), type Ⅱ (43.3%) had branches in upper 1/2 region (region Ⅰ and Ⅱ), and type Ⅲ (23.3%) distributed over the upper 3/4 region (region Ⅰ, Ⅱ and Ⅲ). In type Ⅱ, the diameter of the main branches of posterior femoral nerves in the middle of popliteal tossa was 10±04 mm and innervated the posterior upper-middle region (which was the ordirary donor region of distal based sural island flaps) of lower legs with 2.0±0.8 branches, whose diameter was 0.3±0.2 mm and length was 3.5±2.7 mm. The distance between the end of these branches and small saphenous vein was 0.8±0.6 mm. In type Ⅲ, their diameter was 1.2±0.3 mm and innervated the posterior upper-middle region of lower legs with 3.7±1.7 branches, whose diameter was 0.4±0.1 mm and length was 3.7±2.6 mm. The distancebetween the end of these branches and small saphenous vein was 0.8±0.4 mm. Conclusion 66.6% of human main branch of posteriorfemoral nerves (type Ⅱ and type Ⅲ) can be used to restore the sensation of distal based sural island flap through anastomosis with sensor nerve stump of footduring operation.
Objective To investigate the clinical features of multifocal choroiditis (MC) and guide the diagnosis and treatment. Methods Retrospective analysis of clinical data of 18 MC cases (28 eyes) who were diagnosed through fluorescein angiography (FFA) or indocyanine green angiography (ICGA) and fundus characteristics. Results Multiple round to oval lesions scattered throughout the posterior pole and peripheral areas of ocular fundi of all of the 28 eyes(binocular in 10 and monocular in 8) were found. Active focal lesions of ocular fundi were seen in 8 patients and inactive lesions in 10 patients. active and 10 cases were inactive. Choroidal neovascularization(CNV) in macular area was found in 7 patients. The images of FFA of the legions showed hypofluorescence in the early phase, with late leakage and gradual staining or window is defect in the late phase. Conclusions MC is a rare disease and often misdiagnosed to other disease and FFA helpful in diagnosis. (Chin J Ocul Fundus Dis, 2005, 21: 367-370)