This study aims to clarify host factors of IFN treatment in the treatment of chronic hepatitis B (CHB) patients by screening the differentially expressed genes of IFN pathway CHB patients with different response to interferon (IFN) therapy. Three cases were randomly selected in IFN-responding CHB patients (Rs), non-responding CHB patients (NRs) and healthy participants, respectively. The human type I IFN response RT2 profiler PCR array was used to detect the expression levels of IFN-related genes in peripheral blood monocytes (PBMCs) from healthy participants and CHB patients before and after Peg-IFN-α 2a treatment. The results showed that more differentially expressed genes appeared in Rs group than NRs group after IFN treatment. Comparing with healthy participants, IFNG, IL7R, IRF1, and IRF8 were downregulated in both Rs and NRs group before IFN treatment; CXCL10, IFIT1, and IFITM1 were upregulated in the Rs; IL13RA1 and IFI35 were upregulated in the NRs, while IFRD2, IL11RA, IL4R, IRF3, IRF4, PYHIN1, and ADAR were downregulated. The expression of IL15, IFI35 and IFI44 was downregulated by 4.09 (t = 10.58, P < 0.001), 5.59 (t = 3.37, P = 0.028) and 10.83 (t = 2.8, P = 0.049) fold in the Rs group compared with the NRs group, respectively. In conclusion, IFN-response-related gene array is able to evaluate IFN treatment response by detecting IFN-related genes levels in PBMC. High expression of CXCL10, IFIT1 and IFITM1 before treatment may suggest satisfied IFN efficacy, while high expression of IL13RA1, IL15, IFI35 and IFI44 molecules and low expression of IFRD2, IL11RA, IL4R, IRF3, IRF4, PYHIN1 and ADAR molecules may be associated with poor IFN efficacy.
ObjectiveTo study the mechanism of the effect on invasion and metastasis of colorectal cancer by down-regulating c-Met gene.Methodsc-Met genes were knocked down in SW480 cells, differential genes were screened by gene chip, functional cluster analysis of differential genes was carried out, and IPA was used to analyze the interaction network of cell signal pathway and related differential genes, as well as the ralationship between related genes and upstream regulatory molecules. The related genes in the suppressed signal pathway were selected for qPCR verification.ResultsAfter knockdown of c-Met, the number of up-regulated genes and down-regulated genes in SW480 cells was 399 and 286, respectively. Cluster analysis showed that c-Met knockdown had a great effect on the gene expression level of SW480 cells, IPA pathway analysis showed that HGF signaling pathway was suppressed, and after c-Met knockdown, IPA interaction network suggested that AKT2, PIK3CA, and MAP2K4 in HGF pathway were down-regulated, and qPCR verified that the above genes were also down-regulated, which was consistent with the results of microarray.Conclusionc-Met may affect the invasion and metastasis of colorectal cancer through the regulation of AKT2, PIK3CA, and MAP2K4 in HGF pathway.
ObjectiveTo analyze the expression and prognostic value of PHD Finger Protein 19 (PHF19) in non-small cell lung cancer (NSCLC) based on gene chip data. MethodsThe data about The Cancer Genome Atlas (TCGA) lung cancer patients were downloaded to analyze the expression of PHF19 in lung cancer. The data sets GSE30219 and GSE50081 were downloaded from the Gene Expression Omnibus (GEO), and the patients were screened into the training set and the validation set respectively, thus analyzing the relationship between PHF19 expression, gender, age, tumor clinical stage, pathological type and disease-free survival (DFS), as well as their relationship with overall survival (OS). Gene Ontology (GO)-Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune infiltration analysis were performed on PHF19 and co-expression related genes in lung cancer patients through the online database. ResultsThe data from TCGA and GEO showed PHF19 was highly expressed in lung cancer (P<0.001), and PHF19 expression was related to tumor stage. The NSCLC patients in the PHF19 low expression group had longer DFS and OS than those in the high expression group (P<0.05). Multivariate COX regression analysis showed PHF19 was an independent prognostic factor in NSCLC patients (P<0.05). A nomogram drawing to predict the survival rate of lung cancer patients and verifying the C index showed the model has good accuracy. Gene enrichment analysis showed PHF19 high expression is mainly related to the cell cycle, cell nucleus, chromatin, etc. Immune infiltration analysis showed PHF19 is closely related to immune cell infiltration. ConclusionsPHF19 can be used as an indicator to predict the prognosis of NSCLC. PHF19 high expression is an independent predictor of poor prognosis of NSCLC and may be a new target for its treatment.
ObjectiveTo screen for the differentially expressed genes in steroid-induced osteonecrosis of the femoral head (ONFH) by gene microarray. MethodsThe femoral head tissue of ONFH was harvested from 3 patients with steroid-induced ONFH, aged 25, 31, and 38 years, respectively. Normal tissue was harvested from a 26-year-old male remains contributor. HE staining of the specimens was performed for observing the histology manifestation; the total RNA was extracted for measuring the purity; cDNA probe was synthesized by reverse transcription, and then were hybridized as the cDNA microarray for scanning of fluorescent signals and differentially expressed genes in the tissues. ResultsHE staining of normal tissue showed complete unit composed of lamellar bone, continuous and complete lamellar bone with a concentric arrangement around blood vessels, and normal bone cells in the trabecular bone lacuna. In ONFH tissue, adipose tissue increased in the medullary cavity, with increased fat cells filling in the medullary cavity and extruding capillary, and with decreased bone cells in the bone trabecula, which had deeply-stained nuclear chromatin, pyknotic or cracking nucleus, and even bone cells disappeared in the part of the bone lacuna, and trabecular bone became thin, sparse, interrupt, reduced area in visual field/unit. Total RNA extraction electrophoretogram displayed clear bands of 28S and 18S, and the brightness ratio of the 28S:18S was 2:1, indicating good total RNA quality. And 44 genes were differentially expressed, and there were 28 up-regulated genes and 16 down-regulated genes, including cell/organism defense genes, cell structure/motility genes, cell division genes, cell signaling/cell communication genes, cell metabolism genes, gene/protein expression genes, and unclassified genes. ConclusionThe analysis of the gene expression profile of steroid-induced ONFH can provide evidence for the pathogenesis of ONFH.
Objective To explore the microRNA (miRNA) expression changes and related miRNA characteristics of colorectal cancer (CRC) with hepatic metastasis by miRNA microarray. Methods The fresh specimens of primary CRC were collected in 10 patients during operation, which with hepatic metastasis or not. miRNA microarray analysis was performed to compare the miRNA expression levels in two groups. The different expression levels of miRNA were validated by quantitative real-time PCR analysis. Results A total of six dysregulated miRNAs were identified in the CRC patients with hepatic metastasis comparing with CRC patients without hepatic metastasis, including 3 up-regulated miRNAs (miR-224, miR-1236, and miR-622) and 3 down-regulated miRNAs (miR-155, miR-342-5p, and miR-363), and the quantitative real-time PCR result of miR-224 consisted with the microarray finding. Conclusions miR-224 may be involved in the process of CRC with hepatic metastasis pathogenesis. miR-224 would be a research direction on a new biomarker or therapic method in CRC with hepatic metastasis.
ObjectiveTo investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. MethodshADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. ResultshADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type Ⅱ, Col2a1, aggrecan, Col10a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in noninduced hADSCs (P<0.05). Eleven differentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, selfrenewal, signal transduction, intracellular signaling cascade, and cell cycle control. ConclusionA group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation in hADSCs and subsequently control hADSCs differentiation, and provide high performance seed cells for cartilage tissue engineering.
Objective Methylprednisolone (MP) is the only active drug for acute spinal cord injury (SCI), but the molecular mechanism is still further studied. To investigate the pathophysiology of SCI and the molecular mechanism of MP in treating SCI. Methods Nine rabbits were randomly divided into 3 groups, weighing (3 100 ± 140) g: sham operation group(group A, n=3), model group (group B, n=3), and drug treatment group (group C, n=3). After laminectomy was performed in3 groups, no treatment was given in group A, and the model of SCI was establ ished with modified Allen’s fall ing strike method in groups B and C at L4; then high-dose MP equivalent with human dose was adopted in group C at 2 hours after SCI and the normal sal ine in group B. All rabbits were sacrificed at 8 hours after SCI, and then the spinal cord tissues about 8 mm long which included the injuried site were obtained. Total RNA was isolated with Trizol one-step method to examine the gene expression profile by using Ogl io technologies with standard operating procedures and qual ity control as recently described respectively. GeneSpring11.0 analyzer software was used to filter potential candidate genes for statistical significance using Welch’s t test, and only genes with P lt; 0.05 and fold change (FC) ≥ 2 were retained for further analysis. Some differentially expressed genes were also verified by RT-PCR to ensure the rel iabil ity of microarray results. Results The SCI model was set up and the samples of spinal cord tissues were acquired successfully at 8 hours after SCI. The qual ify of total RNA from each group met the requirement for the microarray examination and data analysis. These differentially expressed genes involved inflammation, immunity, ion transportation, transcription factors, and so on. The results of genes IL-1α, IL-1β, and defensin 4 (NP-4) by RTPCR were consistent with that of gene-chips. The immuno-related genes included NP-3, NP-4, corticostatin 6, CAP-18, and antimicrobial peptide, which displayed obvious differential expression. Conclusion High-dose MP has protective effects on nervous function by the immunity mechanism, and the main effector may be neutrophil.
Objective To identify genes associated with hepatocellular carcinoma (HCC) as candidate diagnostic markers in a genome-wide scale. Methods The gene expression profiles of 40 pairs of HCC tumor tissue and peripheral non-tumorous liver tissue were analyzed by using gene chip technology.The gene chips were fabricated at the National Cancer Institute (NCI). Each gene chip contained 9 180 genes. The fluorescent targets were prepared by a direct labeling approach using two kinds of fluorescences as following: 100 μg of total RNA from non-cancerous liver tissue was labeled with Cy3-dUTP and 200 μg of total RNA from HCC was labeled with Cy5-dUTP. The targets were mixed together and hybridized with genes on the gene chips. Unsupervised hierarchical clustering analysis was done by CLUSTER and TREEVIEW software using median centered correlation and complete linkage. Results A total of 10 genes were found up-regulated in over 80% of primary tumors comparing with that of their corresponding non-tumorous liver tissues at a two-fold filter with an unsupervised hierarchical clustering algorithm, including protocadherin-alpha 9, ESTs, Homo sapiens cDNA FLJ, KPNA2, RPS20, SNRPE, CDKN2A, UBD, MDK and ANXA2.Conclusion These genes are supposed to be candidates for the diagnosis of HCC. Further investigation of these genes in a large scale of patients with HCC and patients with non-malignant hepatic diseases will be needed to disclose whether they could be used clinically as novel diagnostic tumor markers for HCC.