west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "周围神经缺损" 18 results
  • CONSTRUCTION AND EVALUATION OF THE TISSUE ENGINEERED NERVE OF bFGF-PLGA SUSTAINED RELEASE MICROSPHERES

    Objective To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lacitic acid) (PDLLA) catheters. Methods SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres andECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissueengineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was appl ied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Eelectrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. Results All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P lt; 0.05). At 20 and 24 weeks after the operation, group E was significantly different from groups B and C in SFI (P lt; 0.05). At 12 weeks after the operation, electrophysiological detection showed nerve conduct velocity (NCV) of group E was bigger than that of groups B and C (P lt; 0.05), and compound ampl itude (AMP) as well as action potential area (AREA) of group E were bigger than those of groups B, C and D (P lt; 0.05). At 24 weeks after the operation, NCV, AMP and AREA of group E were bigger than those of groups B and C (Plt; 0.05). At 12 weeks after the operation, histological observation showed the area of regenerated nerves and the number of myel inated fibers in group E were significantly differents from those in groups A, B and C (Plt; 0.05). The density and diameter of myel inated fibers in group E were smaller than those in group A (Plt; 0.05), but bigger than those in groups B, C and D (P lt; 0.05). At 24 weeks after the operation, the area of regenerative nerves in group E is bigger than those in group B (P lt; 0.05); the number of myel inated fibers in group E was significantly different from those in groups A, B, C (P lt; 0.05); and the density and diameter of myel inated fibers in group E were bigger than those in groups B and C (Plt; 0.05). Conclusion The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeables PDLLA catheters promote nerve regeneration and has similar effect to autograft in repair of nerve defects.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • CLINICAL APPLICATION OF BRIDGING OF THE NERVE DEFECTS BY USING VASCULARIZED NERVE SHEATH CANAL WITH LIVING SCHWANN S CELLS

    Basing on the experimental results, 48 nerve defects (with the length of 3-4 cm in 21 cases, 4.1-5cm in 25 cases and 6cm in 2 cases) were repaired clinically by using vaseularized nerve sheath canal with living Schwann s cells, 87.5 percent of them obtained good results. The advantages were: (1) The neural sheath had rich blood supply with resultant less scar from its healing; (2) The living Schwann s cells would secrete somatomedin to promote the reproduction of neural tissues; and (3) The useless neurofib...

    Release date:2016-09-01 11:38 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PROMOTION OF NEUROTROPIC REINNERVATION WITH CHEMICALLY EXTRACTED ACELLULAR NERVE ALLOGRAFT

    Objective To investigate the promotion effect of neurotropic reinnervation with chemically extracted acellular nerve allograft. Methods The sciatic nerves of 5 healthy adult SD rats, regardless of gender and weighing 270-300 g, were collected to prepare chemically extracted acellular nerve allograft. Eighteen healthy adult Wistar rats, regardless of genderand weighing 300-320 g, were made the model of left sciatic nerve defect (10 mm) and randomly divided into 2 groups: autograft (control group, n=9) and allograft group (experimental group, n=9). The defects were bridged by acellular nerve allograft in experimental group and by autograft by turning over the proximal and distal ends of the nerve in control group. At 3 months after transplantation, dorsal root ganglion (DRG) resection operation was performed in 6 rats of 2 groups. At 3 weeks after operation, the sural nerves were harvested to calculate the misdirection rate of nerve fibers with pathological staining and compute-assisted image analysis. Cholinesterase staining and carbonic anhydrase staining were performed in the sural nerve of 3 rats that did not undergo DRG resection at 3 months. Results The results of chol inesterase staining and carbonic anhydrase staining showed that experimental group had less brown granules and more black granules than control group. After DRG resection, count of myelinated nerve fiber were 4 257 ± 285 in the experimental group and 4 494 ± 310 in the control group significant (P lt; 0.05). The misdirection rate was 2.27% ± 0.28% and 7.65% ± 0.68% in the experimental group and in the control group respectively, showing significant difference (P lt; 0.05). Conclusion Chemically extracted acellular nerve allograft can not only act as a scaffold in the period of nerve defects repair, but markedly enhance the effects of neurotropic reinnervation.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • COMPARISON BETWEEN EFFECTS OF SMALL INTESTINAL SUBMUCOSA GRAFT AND INSIDEOUT VEIN GRAFT ON REPAIRING PERIPHERAL NERVE DEFECTS

    Objective To make a comparison between the effects of the small intestinal submucosa (SIS) graft and the insideout vein graft on repairing the peripheral nerve defects. Methods SIS was harvested from the fresh jejunum of the quarantined pig by curetting the musoca, the tunica serosa, and the myometrium; then, SIS was sterilized, dried and frozen before use. Thirty-six male SD rats were divided into 3 groups randomly, with 12 rats in each group. Firstly, the 10mm defects in the right sciatic nerves were madein the rats and were respectively repaired with the SIS graft (Group A), the insideout autologous vein graft (Group B), and the autonerve graft (Group C). At 6 weeks and 12 weeks after the operations, the right sciatic nerves were taken out, and the comparative evaluation was made on the repairing effects by the histological examination, the neural electrophysiological examination, the computerized imaging analysis, and the Trueblue retrograde fluorescence trace. Results The histological examination showed that the regenerated nerve fibers were seen across the defects in the three groups at 6 weeks after the operations. The nerve fibers were denser, the formed nerve myelin was more regular, and the fibrous tissue was less in Group A than in Group B; the nerve regeneration was more similar between Group A and Group C. At 12 weeks after the operations, the neural electrophysiological examination showed that the neural conductive rate was significantly lower in Group B than in Groups A and C (Plt;0.05),but no statistically significant difference was found between Group A and GroupC (Pgt;0.05); the component potential wave amplitude was not statistically different between Group A and Group B; however, the amplitude was significantly lower in Groups A and B than in Group C (Plt;0.05). At 6 weeks and 12 weeks after the operations, the computerized imaging analyses showed that the axiscylinder quantity per area and the nerve-tissue percentage were significantly greaterin Group A than in Group B (Plt;0.05); the average diameter of the regenerated axis cylinder, the axiscylinder quantity per area, and the nerve-tissue percentage were significantly lesser in Group B than in Group C (Plt;0.05). At 12 weeks after the operations, the Trueblue retrograde fluorescence trace revealed that the positivelylabeled neurons were found in the lumbar 3-6 dorsal root ganglion sections in the three groups. Conclusion The small intestinal submucosa graft is superior to the autologous inside-out vein graft in repairing the peripheral nerve defects and it is close to the autonerve graft in bridging the peripheral nerve defects. Therefore, the small intestinal submucosa is a promising biological material used to replace the autonerve graft.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF AUTOLOGOUS VEIN NERVE CONDUIT FOR REPAIR OF PERIPHERAL NERVE DEFECT

    ObjectiveTo summarize the research progress of autologous vein nerve conduit for the repair of peripheral nerve defect. MethodsThe recent domestic and foreign literature concerning autologous vein nerve conduit for repair of peripheral nerve defect was analyzed and summarized. ResultsA large number of basic researches and clinical applications show that the effect of autologous venous nerve conduit is close to that of autologous nerve transplantation in repairing short nerve defect, especially the compound nerve conduit has a variety of autologous nerve tissue, cells, and growth factors, etc. ConclusionAutologous vein nerve conduit for repair of non-nerve defect can be a good supplement of autologous nerve graft, improvement of autologous venous catheter to repair peripheral nerve defect is the research direction in the future.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PERIPHERAL NERVE REGENERATION AFTER ARTERY SLEEVE ANASTOMOSIS AND END-TO-SIDE SUTURE

    Objective To know the possibility of nerveregeneration after artery sleeve anastomosis and end-to-side suture Methods Seventy-five SD rats were divided into 5 groups. First, the distal end ofsevered peroneal nerve was sutured end-to -side with artery sleeve anastomosis withnormal nerve tibial trunk in groups A, B, C and D. Second, the tibial epineurium at the suture site was not removed in group A; the epineurium at the suturesite was removed(windowing) in group B; the distal end of pre-injured peroneal nerve was sutured after 14 days and windowing was done in group C; and the neural growth factor was injected into artery sleeve and windowing was done in group D. While the distal end of severed peroneal nerve was sutured end to side directly with normal nerve tibial trunk and windowing was done in group E. The histological observation was made and the number of nerve fibers was recorded after 4, 8 and 12 weeks of operation.Results After 4 weeks, there existed the regeneration of axons and myeline sheaths in groups C, D, E, and no nerve fiber regeneration was seen in group A. After 8 weeks, the regenerating nerve fibers were significantly more in groups C, D and E than in group B and ingroup E than groups C and D(Plt;0.05). After 12 weeks, the regenerating nervefibers were significantly more in groups C,D and E than in group B(Plt;0.05).Conclusion End-to-side coaptation with artery sleeve anastomosis is a new valuable method in repair of peripheral nerve injuries.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF REPAIRING PERIPHERAL NERVE BY DIFFERENT TYPES OF GRAFTS

    A 0.6cm segment of right common peroneal nerve was resected in 60 SpragueDawley rats. The nerve defects were bridged by adhering the epineurium with autogenous nerve, vein, skeletal muscle, tendon and silastic tube. According to the kinds of the grafts used, the rats were divided into 5 groups. In 6 and 12 weeks after operation, the effect was assessed by motor nerve conduction velocity, weight of the anterior tibial muscle, number of distal axons and histological examination. It was demonstrated that the result from autogenous nerve graft was superior to other grafts in all aspects and that of the vein graft was better thanthe other three. The characteristics of the nerve regeneration and the process of maturation in different types of the grafts were discussed. The related microenvironment which caused the difference was also discussed.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • 构建肌肉组织床修复股神经长段缺损两例

    目的总结 2 例采用构建肌肉组织床行自体腓肠神经移植修复股神经长段缺损的经验。方法2015 年 3 月及 2017 年 10 月共收治 2 例医源性股神经缺损男性患者,年龄分别为 48 岁及 52 岁。股神经缺损长度分别为 11、12 cm,股四头肌肌力均为 M0 级。分别于前次术后 1、2 个月行腓肠神经移植术,术中于髂肌、腰大肌肌间隙制备通道作为移植神经组织床。术后常规康复锻炼。结果术后 2 例患者分别获随访 34、26 个月,股四头肌肌力均恢复至 M4+级,步态恢复正常。结论将移植神经植入肌肉组织床可以获得较好营养供给,有利于移植神经再生,取得良好疗效。

    Release date:2020-11-02 06:24 Export PDF Favorites Scan
  • REPAIR OF PERIPHERAL NERVE DEFECT BY XENOGENEIC ACELLULAR NERVE BASAL LAMINA SCAFFOLDS

    OBJECTIVE: To explore the possibility to bridge peripheral nerve defects by xenogeneic acellular nerve basal lamina scaffolds. METHODS: Thirty SD rats were randomly divided into 5 groups; in each group, the left sciatic nerves were bridged respectively by predegenerated or fresh xenogeneic acellular nerve basal lamina scaffolds, autogenous nerve grafting, fresh xenogeneic nerve grafting or without bridging. Two kinds of acellular nerve basal lamina scaffolds, extracted by 3% Triton X-100 and 4% deoxycholate sodium from either fresh rabbit tibial nerves or predegenerated ones for 2 weeks, were transplanted to bridge 15 mm rat sciatic nerve gaps. Six months after the grafting, the recovery of function was evaluated by gait analysis, pinch test, morphological and morphometric analysis. RESULTS: The sciatic nerve function indexes (SFI) were -30.7% +/- 6.8% in rats treated with xenogeneic acellular nerve, -36.2% +/- 9.7% with xenogeneic predegenerated acellular nerve, and -33.9% +/- 11.3% with autograft respectively (P gt; 0.05). The number of regenerative myelinated axons, diameter of myelinated fibers and thickness of myelin sheath in acellular xenograft were satisfactory when compared with that in autograft. Regenerated microfascicles distributed in the center of degenerated and acellular nerve group. The regenerated nerve fibers had normal morphological and structural characters under transmission electron microscope. The number and diameter of myelinated fibers in degenerated accellular nerve group was similar to that of autograft group (P gt; 0.05). Whereas the thickness of myelin sheath in degenerated accellular nerve group was significantly less than that of autograft group (P lt; 0.05). CONCLUSION: The above results indicate that xenogeneic acellular nerve basal lamina scaffolds extracted by chemical procedure can be successfully used to repair nerve defects without any immunosuppressants.

    Release date: Export PDF Favorites Scan
  • APPLICATION PROGRESS OF SEED CELLS IN TISSUE ENGINEERED NERVE

    ObjectiveTo summarize the applications of Schwann cells (SCs), stem cells, and genetically modified cells (GMCs) in repair of peripheral nerve defects. MethodsThe literature of original experimental study and clinical research related with SCs, stem cells, and GMCs was reviewed and analyzed. ResultsSCs play a key role in repair of peripheral nerve defects; the stem cells can be induced to differentiate into SCs, which can be implanted into nerve conduits to promote the repair of peripheral nerve defect; genetically modified technology can enhance the function of SCs and different stem cells, which has been regarded as a new option for tissue engineered nerve. ConclusionAlthough great progress has been made in tissue engineered nerve recently, mostly limited to the experimental stage. The research of seed cells in application of tissue engineered nerve need be studied deeply.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content