Cardiovascular disease has caused a huge burden of disease worldwide, and the rapid advancement of smart wearable devices has provided new means for early diagnosis, real-time monitoring, and event prevention of cardiovascular disease. Smart wearable devices can be classified into various categories based on detection signals and physical carrier types. Based on an overview of the composition of such devices, this article further introduces the current cutting-edge research and related market products related to smart blood pressure monitoring, electrocardiogram monitoring, and ultrasound monitoring. It also discusses the future development and challenges of such devices, aiming to provide evidence support for the research and development of smart wearable devices in the diagnosis and treatment of cardiovascular diseases in the future.
This paper aims to study the accuracy of cardiopulmonary physiological parameters measurement under different exercise intensity in the accompanying (wearable) physiological parameter monitoring system. SensEcho, an accompanying physiological parameter monitoring system, and CORTEX METALYZER 3B, a cardiopulmonary function testing system, were used to simultaneously collect the cardiopulmonary physiological parameters of 28 healthy volunteers (17 males and 11 females) in various exercise states, such as standing, lying down and Bruce treadmill exercise. Bland-Altman analysis, correlation analysis and other methods, from the perspective of group and individual, were used to contrast and analyze the two types of equipment to measure parameters of heart rate and breathing rate. The results of group analysis showed that the heart rate and respiratory rate data box charts collected by the two devices were highly consistent. The heart rate difference was (−0.407 ± 3.380) times/min, and the respiratory rate difference was (−0.560 ± 7.047) times/min. The difference was very small. The Bland-Altman plot of the heart rate and respiratory rate in each experimental stage showed that the proportion of mean ± 2SD was 96.86% and 95.29%, respectively. The results of individual analysis showed that the correlation coefficients of the whole-process heart rate and respiratory rate data were all greater than 0.9. In conclusion, SensEcho, as an accompanying physiological parameter monitoring system, can accurately measure the human heart rate, respiration rate and other key cardiopulmonary physiological parameters under various sports conditions. It can maintain good stability under various sports conditions and meet the requirements of continuous physiological signal collection and analysis application under sports conditions.
In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.
Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min vs. (15.95 ± 3.08) beat/min, P < 0.001], and larger R_RSBI_cv [70.96% (54.34%–104.28)% vs. 58.48% (45.34%–65.95)%, P = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% vs. (17.10 ± 6.83)%, P = 0.004], and smaller SampEn (0.67 ± 0.37 vs. 1.01 ± 0.29, P < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.
With the rapid advancement of artificial intelligence (AI), its application in the rehabilitation of patients undergoing hip and knee arthroplasty has been increasingly emphasized. AI has the potential to enhance the precision and individualization of rehabilitation training, improve patient adherence, and optimize overall outcomes. This review summarizes the current progress of AI in postoperative rehabilitation following hip and knee arthroplasty, focusing on its roles in rehabilitation assessment, intelligent training, and remote rehabilitation. Furthermore, the advantages of AI in improving efficiency, accuracy, and patient engagement are highlighted, while existing challenges, including insufficient clinical evidence, high technological costs, and ethical concerns, are critically discussed. Finally, potential future directions, such as the integration of AI with virtual reality and wearable devices, are proposed. This review aims to provide valuable insights for clinical practice and future research in the rehabilitation of hip and knee arthroplasty.
Smart wearable devices play an increasingly important role in physiological monitoring and disease prevention because they are portable, real-time, dynamic and continuous.The popularization of smart wearable devices among people under high-altitude environment would be beneficial for the prevention for heart and brain diseases related to high altitude. The current review comprehensively elucidates the effects of high-altitude environment on the heart and brain of different population and experimental subjects, the characteristics and applications of different types of wearable devices, and the limitations and challenges for their application. By emphasizing their application values, this review provides practical reference information for the prevention of high-altitude disease and the protection of life and health.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Early diagnosis and effective management are important to reduce atrial fibrillation‐related adverse events. Photoplethysmography (PPG) is often used to assist wearables for continuous electrocardiograph monitoring, which shows its unique value. The development of PPG has provided an innovative solution to AF management. Serial studies of mobile health technology for improving screening and optimized integrated care in atrial fibrillation have explored the application of PPG in screening, diagnosing, early warning, and integrated management in patients with AF. This review summarizes the latest progress of PPG analysis based on artificial intelligence technology and mobile health in AF field in recent years, as well as the limitations of current research and the focus of future research.