Objective To observe the retinal toxicity of intravitreal injection of Bevacizumab (Avastin) in albino rabbit eyes at different doses. Methods Sixteen New Zealand albino rabbits,thirty-two eyes were divided into four groups at random. Three groups were prepared for Avastin experiment, named A, B, C. Each group received intravitreal injection of Avastin at dose 1.25 mg/0.05ml,2.5 mg/0.1ml and 6.25 mg/0.25 ml respectively. The other group named D served as a control, and accepted intravitreal injection of 0.9% normal saline 0.1 ml. Then test it by electroretinagram (ERG) after 1, 2 and 4 weeks. In addition, each group was removing two rabbitprime;s eyes to observe the retinal morphology and ultra structure by light microscope and transmission electron microscopy after intravitreal injection avastin 1, 2 and 4 weeks. Results The ERG pattern and amplitude of each group were normal after intravitreal injection Avastin 1, 2 and 4 weeks. (P>0.05)Between study and control groups, there was no significant difference in retinal morphology which was observed by light microscope at any stage of the study. By electron microscopic observation, retinal ultramicrostructure was no evident retinal toxicity being tested both at group A and B (1.25 mg/0.05 ml and 2.5 mg/0.1 ml). But at group C (6.25 mg/0.25 ml), significant mitochondrial swelling and hydropic changes were seen in the inner segments of photoreceptors. And there was no improvement of the pathological changes in four weeks. Conclusion It is safe that intravitreal injection of Avastin in rabbitprime;s eyes at dose 1.25 mg or 2.5 mg at single time. (Chin J Ocul Fundus Dis,2008,24:193-196)
Objective To observe the effect of high glucose on the expression of activating transcription factor 4 (ATF4) in cultured retinal Muuml;ller glia cells. Methods The retinal tissue of Sprague-Dawley (SD) rats was collected, and Muuml;ller cells were isolated and cultured. The glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) of Muuml;ller cells were identified by streptavidin-biotin-peroxidase complex. Cultured rat Muuml;ller cells were divided into control group (5.5 mmol/L glucose), group A (20 mmol/L glucose), group B (30 mmol/L glucose) and group C (40 mmol/L glucose). ATF4 protein expressions in Muuml;ller cells of four groups were measured by Western blot four days after cultured. Results GFAP and GS expressed in more than 95% of Muuml;ller cells. Over 95% of Muuml;ller cells of group A, B and C were positive for GFAP and GS. Western blots indicated that ATF4 protein in group A, B and C increased obviously compared with the control group (q=0.293, 0.754,0.484;P<0.05). Conclusion High glucose can increase the expression of ATF4 protein and cause endoplasmic reticulum stress in retinal Muuml;ller glia cells in vitro.
Three different methods of electrocautery were used to study the effects of electrocoagu-lation on limbs and intraabdominal blood vessel of 6 rabbits. These methods are non-touching, touching and segmental electrocoagulation. The results show that all three methods can satisfactorily stop bleeding of the blood vessel which is smaller than 1. 5mm in diameter. For arteries with the diameter 1.5~2.0mm. the effect of segment electrocoagulation is better than the other methods because it has a long burn end after cautery.
ObjectiveTo observe the effect of subretinal injection of retinal pigment epithelium (RPE) cells for RPE in mice. MethodsA total of 30 postnatal day 7 C57BL/6J mice were randomly divided into normal mice group, OIR model group and OIR model cell transplanted group, 10 mice in each group. The OIR model was induced in mice of OIR model group and OIR model cell transplanted group. The RPE cells were subretinal injected into the RPE of mice in OIR model cell transplanted group. At 20 days after the injection, the RPE thickness was evaluated by fluorescence microscope. The expression of RPE65, Bestrophin and zonula occludens-1 (ZO-1) were estimated by Western blot and real-time quantitative PCR (RT-PCR). ResultsThe thickness of RPE in OIR model mice was thinner than that in normal mice; the thickness of RPE in OIR model cell transplantation mice was significantly thicker than that in the OIR model mice. The results of Western blot and RT-PCR indicated that the differences of protein (F=8.597, 18.864, 25.691) and mRNA expression (F=39.458, 11.461, 34.796) of RPE65, Bestrophin, ZO-1 were statistically significant between OIR model group and OIR model cell transplanted group (P < 0.05). ConclusionsSubretinal injection of RPE cells can promote RPE thickening. RPE65 and Bestrophin protein relative expression levels increased, ZO-1 protein relative expression levels reduced; mRNA expression levels of RPE65, Bestrophin and ZO-1 genes increased.
Objective To observe the effect of Twist gene interference on the migration and pAkt protein expression of Rhesus retinal vascular endothelial cell line. Methods The Rhesus retinal vascular endothelial cells (RF/6A) were divided into Twist interference plasmid group, negative control group, and phosphate buffered solution (PBS) group; plasmid vectors were transfected via liposome gene transfection method. Migrated endothelial cells was detected and counted by Transwell chamber assay. Matrigel was used in endothelialcell tube formation; the inhibitory effect of Twist gene interference on endothelial cell tube formation was observed.The effect of Twist gene interference on the expression of pAkt protein in RF/6Acells was measured by Western blot. Results The number of migrated endothelial cells in Twist interference plasmid group was lower than that in the negative control and PBS group (F=23.786,P=0.000).The number of endothelial cell tubes in Twist interference plasmid group was apparently less than that in the negative control and PBS gorup (F=7.159,P=0.014). The expression of pAkt protein in Twist interference plasmid group decreased markedly.Conclusion Twist gene interference can suppress the migration of retinal endothelial cells via inhibiting the expression of pAkt protein.
Objective:To observe the effect of beta;estradiol on gluta mate concentration in rabbitsprime; retinae injured by ischemic reperfusion. Methods:Twenty r abbits ware randomly divided into two groups, the control group and the treatmen t group, with 10 rabbits in each group. Before examined by binocular flash elect roretinography (FERG), retinal ischemic reperfusion (RIR) model was induced in t h e right eyes of all the rabbits by increasing intraocular pressure to 120 mm Hg for 60 minutes; the left eyes were as the control eyes. The rabbits were hypoder mically injected with beta;estradiol (0.1 mg/kg) in treatment group and with phys i ological saline in the control group 2 hours before ischemia. The results of FER G of the right eyes in both of the 2 groups 0, 4, 8, and 24 hours after reperfus ion were record respectively and were compared with the results of FERG before r eperfusion. The retina tissue was collected after the last time of FERG. The con c entration of glutamate was detected by Hitachi L8800 amino acid analyzer. Results:In the right eyes in both of the 2 groups, the result of F ERG showed a beeli ne just after reperfusion. There was no significant difference of awave amplit u de between the 2 groups (t=1.357, 0.798, 0.835; Pgt;0.05); the b wave amplitudes i n experimental group were much higher than those in the control group (t=4.447, 2.188, 3.106; Plt;0.01). The concentration of glutamate in retina was (0.265plusmn;0.014) g/L in the right eyes and (0.207plusmn;0.013) g/L in the left eyes in the control group, and (0.231plusmn;0.007) g/L in the right eyes and (0.203plusmn;0 .014) g/L in the le ft eyes in the treatment group; the difference between the 2 groups was signific ant (F=50.807, P=0.000). There was statistical difference between righ t and left eyes both in the 2 groups and the significant difference of the right eyes betw een the two groups was also found (P=0.000); there was no statistical diffe rence of the left eyes between the 2 groups (P=0.505). Conclusion:beta;-estradiol may prevent the increase of the concentration of glutamate in retina induced by RIR to protect retinal tissue.
Objective To investigate the effects of lights with different wavelength on the retina of rd12 and C57BL/6J mice. Methods Thirty two rd12 mice and C57BL/6J mice were randomly divided into the control group, white light group, midwavelength light (505 nm) group and shortwavelength light (405 nm) group, with eight mice in each group. Besides the control group, other groups were exposed to cycle illuminations [12 hours dark, 12 hours (800plusmn;130) Lux] for seven days to establish the model of retinal light damage. Electroretinogram (ERG) responses of all mice were recorded at the day before illumination and 1st, 4th and 7th days after illumination. The eyes were enucleated at 7th days after illumination to assess levels of reactive oxygen species (ROS), expression of peroxiredoxin 6 (PRDX6), and activity of caspase-3. Results ERG amplitudes of all groups declined gradually in C57BL/6J mice, and the most significant effects was found in the short-wavelength light group. The amplitudes of photopic b-wave were significantly different at 1st, 4th and 7th days (F=4.412, 5.082, 9.980;P<0.01). The amplitudes of cone b-wave of the four groups decreased to (85plusmn;10) %, (70plusmn;19) %, (57plusmn;22) % and (46plusmn;19) % at 7th days, respectively, and were significantly different between white light group and short-wavelength light group(t=3.19,P<0.01). The levels of ROS were significantly different in rd12 mice (F=16.08,P<0.01), and elevated obviously in shortwavelength light group. The expressions of PRDX6 of retina were significantly different in rd12 mice (F=7.214,P<0.05), and were decreased obviously in short-wavelength light group. The caspase-3 relative activity was significantly different in rd12 retina (F=7.530,P<0.05); but there was no significant difference in C57BL/6J mice (F=3.625, 1.993, 1.133; P>0.05).The caspase-3 relative activity were significant different between rd12 mice and C57BL/6J mice in short wavelength light group (t=5.474,P<0.05). Conclusions Short-wavelength light can induce retinal damage of mouse retina, especially in rd12 mouse. The retinal light damage possibly relates to the oxidative damage.