ObjectiveTo investigate the factors associated with unplanned readmission within 30 days after discharge in adult patients who underwent coronary artery bypass grafting (CABG) and to develop and validate a risk prediction model. MethodsA retrospective analysis was conducted on the clinical data of patients who underwent isolated CABG at the Nanjing First Hospital between January 2020 and June 2024. Data from January 2020 to August 2023 were used as a training set, and data from September 2023 to June 2024 were used as a validation set. In the training set, patients were divided into a readmission group and a non-readmission group based on whether they had unplanned readmission within 30 days post-discharge. Clinical data between the two groups were compared, and logistic regression was performed to identify independent risk factors for unplanned readmission. A risk prediction model and a nomogram were constructed, and internal validation was performed to assess the model’s performance. The validation set was used for validation. ResultsA total of 2 460 patients were included, comprising 1 787 males and 673 females, with a median age of 70 (34, 89) years. The training set included 1 932 patients, and the validation set included 528 patients. In the training set, there were statistically significant differences between the readmission group (79 patients) and the non-readmission group (1 853 patients) in terms of gender, age, carotid artery stenosis, history of myocardial infarction, preoperative anemia, and heart failure classification (P<0.05). The main causes of readmission were poor wound healing, postoperative pulmonary infections, and new-onset atrial fibrillation. Multivariable logistic regression analysis revealed that females [OR=1.659, 95%CI (1.022, 2.692), P=0.041], age [OR=1.042, 95%CI (1.011, 1.075), P=0.008], carotid artery stenosis [OR=1.680, 95%CI (1.130, 2.496), P=0.010], duration of first ICU stay [OR=1.359, 95%CI (1.195, 1.545), P<0.001], and the second ICU admission [OR=4.142, 95%CI (1.507, 11.383), P=0.006] were independent risk factors for unplanned readmission. In the internal validation, the area under the curve (AUC) was 0.806, and the net benefit rate of the clinical decision curve analysis (DCA) was >3%. In the validation set, the AUC was 0.732, and the DCA net benefit rate ranged from 3% to 48%. ConclusionFemales, age, carotid artery stenosis, duration of first ICU stay, and second ICU admission are independent risk factors for unplanned readmission within 30 days after isolated CABG. The constructed nomogram demonstrates good predictive power.
The implantation of left ventricular assist device (LVAD) has significantly improved the quality of life for patients with end-stage heart failure. However, it is associated with the risk of complications, with unplanned readmissions gaining increasing attention. This article reviews the influencing factors, prediction methods and models, and intervention measures for unplanned readmissions in LVAD patients, aiming to provide scientific guidance for clinical practice, assist healthcare professionals in accurately assessing patients' conditions, and develop rational care plans.
ObjectivesTo investigate risk factors for unplanned readmission in ischemic stroke patients within 31 days by using random forest algorithm.MethodsThe record of readmission patients with ischemic stroke within 31 days from 24 hospitals in Beijing between between 2015 and 2016 were collected. Patients were divided into two groups according to the occurrence of readmission within 31 days or not. Chi-squared or Mann-Whitney U test was used to select variables into the random forest algorithm. The precision coefficient and the Gini coefficient were used to comprehensively assess the importance of all variables, and select the more important variables and use the margind effect to assess relative risk of different levels.ResultsA total of 3 473 patients were included, among them 960 (27.64%) were readmitted within 31 days after stroke hospitalization. Based on the result of random forest, the most important variables affecting the risk of unplanned readmission within 31 days included the length of hospital stay, age, medical expense payment, rank of hospital, and occupation. When hospitalization was within 1 month, 10-day-hospitalization-stay patients had the lowest risk of rehospitalization; the younger the patients was, the higher the risk of readmission was. For ranks of hospital, patients from tertiary hospital had higher risk than secondary hospital. Furthermore, patients whose medical expenses were paid by free medical service and whose occupations were managers or staffs had higher risk of readmission within 31 days.ConclusionsThe unplanned readmission risk within 31 days of discharged ischemic stroke patients was connected not only with disease, but also with personal social and economic factors. Thus, more attention should be paid to both the medical process and the personal and family factors of stroke patients.
Objective To analyze the influencing factors of unplanned readmission for day surgery patients under the centralized management mode, and to provide a scientific basis for improving the medical quality and safety of day surgery. Methods The data of patients in the day surgery ward of the Second Affiliated Hospital Zhejiang University School of Medicine between October 2017 and October 2021 were retrospectively collected, and they were divided into an unplanned readmission group and a control group according to whether they were unplanned readmission within 31 days. Multivariate logistic regression model was used to analyze the influencing factors of patients’ unplanned readmission within 31 days. Results There were 30 636 patients, of which 46 were unplanned readmission patients, accounting for 0.15%. Logistic regression analysis showed that male [odds ratio (OR)=0.425, 95% confidence interval (CI) (0.233, 0.776), P=0.005], thyroid surgery [OR=19.938, 95%CI (7.829, 50.775), P<0.001], thoracoscopic partial lobectomy [OR=13.481, 95%CI (5.835, 31.148), P<0.001], laparoscopic cholecystectomy [OR=10.593, 95%CI (3.918, 28.641), P<0.001] and hemorrhoidectomy [OR=13.301, 95%CI (4.473, 39.550), P<0.001] were risk factors for unplanned readmission in patients undergoing day surgery. Conclusion Medical staff in day surgery wards need to strengthen supervision of male patients and high risk surgical patients, and improve patients’ awareness of recovery, so as to reduce the rate of unplanned readmission.
ObjectiveTo analyze the influencing factors of acute exacerbation readmission in elderly patients with chronic obstructive pulmonary disease (COPD) within 30 days, construct and validate the risk prediction model.MethodsA total of 1120 elderly patients with COPD in the respiratory department of 13 general hospitals in Ningxia from April 2019 to August 2020 were selected by convenience sampling method and followed up until 30 days after discharge. According to the time of filling in the questionnaire, 784 patients who entered the study first served as the modeling group, and 336 patients who entered the study later served as the validation group to verify the prediction effect of the model.ResultsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors were the influencing factors of patients’ readmission to hospital. The risk prediction model was constructed: Z=–8.225–0.310×assignment of education level+0.564×assignment of smoking status+0.873×assignment of number of acute exacerbations of COPD hospitalizations in the past 1 year+0.779×assignment of regular use of medication+0.617×assignment of rehabilitation and exercise +0.970×assignment of nutritional status+assignment of seasonal factors [1.170×spring (0, 1)+0.793×autumn (0, 1)+1.488×winter (0, 1)]. The area under ROC curve was 0.746, the sensitivity was 75.90%, and the specificity was 64.30%. Hosmer-Lemeshow test showed that P=0.278. Results of model validation showed that the sensitivity, the specificity and the accuracy were 69.44%, 85.71% and 81.56%, respectively.ConclusionsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors are the influencing factors of patients’ readmission to hospital. The risk prediction model is constructed based on these factor. This model has good prediction effect, can provide reference for the medical staff to take preventive treatment and nursing measures for high-risk patients.
ObjectiveTo explore a method for establishing a priority-scoring model for thyroid carcinoma patient admission. MethodsA questionnaire survey was conducted among specialists and outpatients in the thyroid surgery department of the hospital. The weight coefficient of the index factors was calculated to establish the priority-scoring mode by the analytic hierarchy process. The differences in results between specialists and patients were compared. The logical rationality of the model index was tested. ResultsA priority-scoring model for thyroid carcinoma surgery admission was established, including 10 first-level indicators, such as sex, age, cancer type and TNM stage. The weight coefficients of the indicators from high to low were cancer type (0.137), TNM stage (0.134), tumor size (0.127), tumor invasion degree (0.126), tumor invasion site (0.124), relationship between tumor and capsule (0.111), age (0.093), sex (0.061), place of residence (0.05) and medical insurance type (0.035). After the total ratio test, the model CR value was 0.0073, and the model index was highly rational. ConclusionThis study successfully establish a priority-scoring model for thyroid carcinoma surgery admission, which can provide references and a basis for tiered medical services and relevant researches in the future.
Objective To investigate the impact of nutritional risk on unplanned readmissions in elderly patients with chronic obstructive pulmonary disease (COPD), to provide evidence for clinical nutrition support intervention. Methods Elderly patients with COPD meeting the inclusive criteria and admitted between June 2014 and May 2015 were recruited and investigated with nutritional risk screening 2002 (NRS 2002) and unplanned readmission scale. Meanwhile, the patients’ body height and body weight were measured for calculating body mass index (BMI). Results The average score of nutritional risk screening of the elderly COPD patients was 4.65±1.33. There were 456 (40.07%) patients who had no nutritional risk and 682 (59.93%) patients who had nutritional risk. There were 47 (4.13%) patients with unplanned readmissions within 15 days, 155 (13.62%) patients within 30 days, 265 (23.28%) patients within 60 days, 336 (29.53%) patients within 180 days, and 705 (61.95%) patients within one year. The patients with nutritional risk had significantly higher possibilities of unplanned readmissions within 60 days, 180 days and one year than the patients with no nutritional risk (all P<0.05). The nutritional risk, age and severity of disease influenced unplanned readmissions of the elderly patients with COPD (all P<0.05). Conclusions There is a close correlation between nutritional risk and unplanned readmissions in elderly patients with COPD. Doctors and nurses should take some measures to reduce the nutritional risk so as to decrease the unplanned readmissions to some degree.
Objective To construct an information hospital service system and discuss the application effect of information construction in the hospital service center. Methods Patients admitted to West China Hospital of Sichuan University between June 2022 and January 2023 were selected. We innovatively practiced intelligent safety gate, self-appointment admission registration, pre-hospital examination and advance migration, pre-hospital health education, an age-appropriate transformation of information service, and other information service measures to investigate the medical experience of patients, and compared patients’ satisfaction with medical treatment under four admission management methods (Huayitong APP, WeChat, self-service machine, and manual management). Results A total of 1452 patients were surveyed. The overall satisfaction score for medical treatment of patients was (4.98±0.04) points. Among them, Huayitong APP was (4.99±0.03) points, WeChat was (4.98±0.13) points, self-service machine was (4.97±0.05) points, and manual treatment was (4.92±0.11) points. There was a statistically significant difference between groups in overall satisfaction with different admission procedures (F=68.582, P<0.001). Since the information construction of the hospital admission service center was carried out, the average time of admission was (12.4±2.3) minutes, and 89.4% (1 298/1 452) of patients thought the time of admission was ideal. Conclusions The information construction of a hospital admission service center can effectively improve patients’ medical experience and enhance patient satisfaction. In the future, it is necessary to explore the influencing factors of patients’ satisfaction with information construction, and constantly improve and upgrade the information construction of hospital admission service centers.