ObjectiveTo introduce the research status of the immunoregulation function of cancer-associated fibroblasts (CAFs) in tumor microenvironment.MethodThe literatures in recent years on the studies of role of CAFs in the regulation of immune response in the tumor microenvironment were collected and summarized.ResultsThe CAFs played a critical role as the components of the tumor microenvironment. The CAFs could product various growth factors and cytokines that were contributed to the immunoregulation including the polarization of the immune cells and the regulation of the function of immune cells in the tumor microenvironment and eventually resulted in the carcinogenesis, tumor progression, invasion, metastasis and therapy resistance.ConclusionCAFs play a significant role in the immunoregulation in tumor microenvironment, but as a potential target for breast cancer, more studies are still needed to discover the specific markers, heterogeneity, and key signaling pathways.
ObjectiveTo investigate the effects of three-dimensional (3D) printed Ti6Al4V-4Cu alloy on inflammation and osteogenic gene expression in mouse bone marrow mesenchymal stem cells (BMSCs) and mouse mononuclear macrophage line RAW264.7.MethodsTi6Al4V and Ti6Al4V-4Cu alloys were prepared by selective laser melting, and the extracts of the two materials were prepared according to the biological evaluation standard of medical devices. The effects of two kinds of extracts on the proliferation of mouse BMSCs and mouse RAW264.7 cells were detected by cell counting kit 8 method. After co-cultured with mouse BMSCs for 3 days, the expression of osteogenesis- related genes [collagen type Ⅰ (Col-Ⅰ), alkaline phosphatase (ALP), Runx family transcription factor 2 (Runx-2), osteoprotegerin (OPG), and osteopontin (OPN)] were detected by real-time fluorescence quantitative PCR. After co-cultured with mouse RAW264.7 cells for 1 day, the expressions of inflammation-related genes [interleukin 4 (IL-4) and nitric oxide synthase 2 (iNOS)] were detected by real-time fluorescence quantitative PCR, and the supernatants of the two groups were collected to detect the secretion of vascular endothelial growth factor a (VEGF-a) and bone morphogenetic protein 2 (BMP-2) by ELISA. The osteogenic conditioned medium were prepared with the supernatants of the two groups and co-cultured with BMSCs for 3 days. The expressions of osteogenesis-related genes (Col-Ⅰ, ALP, Runx-2, OPG, and OPN) were detected by real-time fluorescence quantitative PCR.ResultsCompared with Ti6Al4V alloy extract, Ti6Al4V-4Cu alloy extract had no obvious effect on the proliferation of BMSCs and RAW264.7 cells, but it could promote the expression of OPG mRNA in BMSCs, reduce the expression of iNOS mRNA in RAW264.7 cells, and promote the expression of IL-4 mRNA. It could also promote the secretions of VEGF-a and BMP-2 in RAW264.7 cells. Ti6Al4V-4Cu osteogenic conditioned medium could promote the expressions of Col-Ⅰ, ALP, Runx-2, OPG, and OPN mRNAs in BMSCs. The differences were all significant (P<0.05).Conclusion3D printed Ti6Al4V-4Cu alloy can promote RAW264.7 cells to secret VEGF-a and BMP-2 by releasing copper ions, thus promoting osteogenesis through bone immune regulation, which lays a theoretical foundation for the application of metal prosthesis.
Using the techniques of monoclonal antibody and radioactive isotope,we found that the total glueosides of paeony (TGP) could almost regain peripheral blood T cell subsets increased or decreased ,supressed cellular immune function and disordered humor immune function of the patients with endogenous uveitis(ElJ) to normal level ,but could not regain those evidently of the patients in control group. The result suggested that TGP might possess double immunomodulatory effect on the patients with EU. (Chin J Ocul Fundus Dis,1994,10:146-148)
Acute pancreatitis (AP) is a gastroenterological emergency with an acute onset and a high mortality rate. The main pathogenesis of AP is pancreatic damage and excessive activation of inflammatory cells induced by multiple factors. Due to anatomical features, the liver is the first extrapancreatic organ to be attacked by high concentrations of trypsin and inflammatory mediators during AP. Hepatic macrophages have been shown to be a major source of AP-related inflammatory factors. Interventions targeting hepatic macrophages may be critical to block liver injury/failure during AP, promote tissue repair, and reduce systemic symptoms. This review summarizes the pathological role of hepatic macrophages in AP and targeted interventions to provide new ideas and approaches to resolve the pathogenesis of AP and alleviate concurrent liver injury.
ObjectiveThrough the analysis of quantitative and functional changes in peripheral blood CD4+ CD25+FOXP3+ regulatory T cells (Treg) of early HCC patients before and after operation, to discuss the operation effect on the immune function from the aspect of immune suppression. MethodsExtracted the lymphocytes of peripheral blood in HCC patients before and after operation (case group, n=15) and normal people (control group, n=5 cases), and analyze the number and function of Treg by flow cytometer after extracellular (CD4, CD25) and intracellular (FOXP3) staining. ResultsCD4+CD25+ T cells and CD25+FOXP3+ T cells in preoperative peripheral blood in case group were significantly higher than those in control group (12.43±2.57)% vs. (5.56±1.02)%, (5.14±1.4)% vs. (2.18±0.83)%, Plt;0.05). These two cells decreased at 1 week after operation. 〔(10.56±2.13)%, (4.28±1.08)%〕, but there was not statistically significant (Pgt;0.05), they decreased significantly at 2 weeks after operation 〔(7.30±0.89)%, (3.43±0.83)%, Plt;0.05〕. CD8+ T cells and CD4+CD25- T cells in preoperative peripheral blood in case group were significantly lower than those in control group 〔(23.42±1.80)% vs. (29.22±2.26)%, (36.14±1.12)% vs. (43.69±2.78)%, Plt;0.05〕, These two cells decreased significantly at 2 weeks after operation 〔(27.15±1.71)%, (40.30±2.00)%〕. The analysis on the Treg and AFP correlation found that they have low correlation (r=048, Plt;0.05 ). ConclusionsThe hepatectomy can improve the immune response of HCC patient. Treg may have a certain auxiliary significance in the diagnosis, treatment and prognosis of patients with hepatocellular carcinoma.
Age-related macular degeneration (AMD) is an age-related degenerative disease with complex pathogenesis, whose initial lesion is accompanied with immune inflammatory response. Amyloid beta (Aβ), a small-molecule protein generated by the hydrolysis of amyloid precursor protein, as the main component, is involved in the formation of drusen, which serves as the early characteristic of AMD. In the local inflammatory response of AMD, Aβ is an important pathological deposit, promoting the proliferation and differentiation of macrophages as well as changing their morphology to accelerate the progression of AMD. In addition, Aβ can also regulate immune molecules and the complement system by activating inflammatory pathways, thus mediating chronic retinal inflammation and promoting the course of AMD. However, since AMD is not caused by inflammation alone, only the immunosuppression may not be effective in inhibiting the course of AMD, and thus the future development is to rebalance the disordered immune system in AMD patients eyes.
ObjectiveTo summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. MethodsThe domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. ResultsThe ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. ConclusionImmunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Titanium and its alloys have become one of the most widely used implant materials in orthopedics because of their excellent mechanical properties and biocompatibility. Implant-associated infection is the main reason of failure of orthopedic implant surgery. The anti-infection modification of implant surface has received more attention in the field of infection prevention and developed rapidly. This article focuses on the current research status of simple anti-infection surface modifications that make titanium implants possess anti-adhesion, bactericidal activity or antibacterial membrane activity, as well as the research progress of composite functional surface modifications that promote bone integration, osteogenesis or immunomodulatory effects on the basis of anti-infection, so as to provide references for the construction of orthopedic implants with composite functions.