1. |
熊昱鹏, 刘文清, 祁海燕等. 肥胖和代谢综合征相关机制和研究进展. 临床医学进展, 2023, 13(9): 14560-14568.
|
2. |
Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci, 2022, 23(2): 786.
|
3. |
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. Lancet Child Adolesc Health, 2022, 6(3): 158-170.
|
4. |
叶佩玉, 闫银坤, 丁文清, 等. 中国儿童青少年代谢综合征患病率Meta分析. 中华流行病学杂志, 2015, 36(8): 884-888.
|
5. |
中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会儿童保健学组. 中国儿童青少年代谢综合征定义和防治建议. 中华儿科杂志, 2012, 50(6): 420-422.
|
6. |
张美仙, 米杰. 中国儿童青少年代谢性心血管危险因素流行现状. 中国循证儿科杂志, 2010, 5(3): 228-236.
|
7. |
Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol, 2010, 56(14): 1113-1132.
|
8. |
Wentzel A, Mabhida SE, Ndlovu M, et al. Prevalence of metabolic syndrome in children and adolescents with obesity: a systematic review and meta-analysis. Obesity (Silver Spring), 2025, 33(1): 12-32.
|
9. |
钟美容, 卢小菊, 梁志金. 自我管理健康教育对提高代谢综合征患者治疗依从性的研究. 中国实用护理杂志, 2009, 25(20): 11-13.
|
10. |
中华医学会老年医学分会老年内分泌代谢疾病学组中国老年代谢综合征药物治疗专家共识(2022)编写组. 中国老年人代谢综合征药物治疗专家共识(2022). 中华老年医学杂志, 2022, 41(9): 1011-1027.
|
11. |
徐瑞, 曹友祥. 独立有氧运动对肥胖儿童青少年代谢综合征患者作用效果的Meta分析//中国体育科学学会. 第十二届全国体育科学大会论文摘要汇编——专题报告(体质与健康分会). 上海: 2022.
|
12. |
张艳涛, 苟小军, 朱一冰. 儿童和青少年代谢综合征诊断和治疗的研究进展. 国际儿科学杂志, 2018, 45(5): 397-400.
|
13. |
高鑫, 张培珍. 代谢综合征发病机制及运动调控研究进展. 中华健康管理学杂志, 2024, 18(6): 475-480.
|
14. |
Zhou Y, Wu W, Zou Y, et al. Benefits of different combinations of aerobic and resistance exercise for improving plasma glucose and lipid metabolism and sleep quality among elderly patients with metabolic syndrome: a randomized controlled trial. Endocr J, 2022, 69(7): 819-830.
|
15. |
周永战, 陈佩杰, 肖卫华. 规律性有氧运动对常见慢性疾病的抗炎效应及其机制. 中国康复医学杂志, 2019, 34(8): 974-979.
|
16. |
Stensvold D, Tjønna AE, Skaug EA, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985), 2010, 108(4): 804-810.
|
17. |
Ostman C, Smart NA, Morcos D, et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol, 2017, 16(1): 110.
|
18. |
Liang M, Pan Y, Zhong T, et al. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: a systematic review and network meta-analysis. Rev Cardiovasc Med, 2021, 22(4): 1523-1533.
|
19. |
Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents. Lancet, 2007, 369(9579): 2059-2061.
|
20. |
Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ, 2011, 343: d5928.
|
21. |
Salanti G, Del Giovane C, Chaimani A, et al. Evaluating the quality of evidence from a network meta-analysis. PLoS One, 2014, 9(7): e99682.
|
22. |
Higgins JTJ, Chandler J, Cumpston M, et al. Cochrane handbook for systematic reviews of interventions. Cochrane Collaboration, 2022.
|
23. |
Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. PLoS One, 2013, 8(10): e76654.
|
24. |
Shim S, Yoon BH, Shin IS, et al. Network meta-analysis: application and practice using Stata. Epidemiol Health, 2017, 39: e2017047.
|
25. |
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol, 2011, 64(2): 163-171.
|
26. |
Mbuagbaw L, Rochwerg B, Jaeschke R, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev, 2017, 6(1): 79.
|
27. |
Chen C, Chuang YC, Chan ES, et al. Beading plot: a novel graphics for ranking interventions in network evidence. BMC Med Res Methodol, 2024, 24(1): 235.
|
28. |
Del Rosso S, Baraquet ML, Barale A, et al. Long-term effects of different exercise training modes on cytokines and adipokines in individuals with overweight/obesity and cardiometabolic diseases: a systematic review, meta-analysis, and meta-regression of randomized controlled trials. Obes Rev, 2023, 24(6): e13564.
|
29. |
Mawdsley D, Bennetts M, Dias S, et al. Model-based network meta-analysis: a framework for evidence synthesis of clinical trial data. CPT Pharmacometrics Syst Pharmacol, 2016, 5(8): 393-401.
|
30. |
Liang Z, Zhang M, Wang C, et al. The best exercise modality and dose to reduce glycosylated hemoglobin in patients with type 2 diabetes: a systematic review with pairwise, network, and dose-response meta-analyses. Sports Med, 2024, 54(10): 2557-2570.
|
31. |
Gallardo-Gómez D, Del Pozo-Cruz J, Noetel M, et al. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res Rev, 2022, 76: 101591.
|
32. |
Higgins JP, Jackson D, Barrett JK, et al. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods, 2012, 3(2): 98-110.
|
33. |
Pedder H, Dias S, Bennetts M, et al. Modelling time-course relationships with multiple treatments: model-based network meta-analysis for continuous summary outcomes. Res Synth Methods, 2019, 10(2): 267-286.
|
34. |
Evans NJ. Assessing the practical differences between model selection methods in inferences about choice response time tasks. Psychon Bull Rev, 2019, 26(4): 1070-1098.
|
35. |
Alberga AS, Goldfield GS, Kenny GP, et al. Healthy eating, aerobic and resistance training in youth (HEARTY): study rationale, design and methods. Contemp Clin Trials, 2012, 33(4): 839-847.
|
36. |
McArdle WD, Katch FI, Katch VL. Energy transfer in the body. Exercise physiology: energy nutrition and human performance. 5th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2001: 131-156.
|
37. |
Kraus WE, Levine BD. Exercise training for diabetes: the "strength" of the evidence. Ann Intern Med, 2007, 147(6): 423-424.
|
38. |
Sigal RJ, Alberga AS, Goldfield GS, et al. Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatr, 2014, 168(11): 1006-1014.
|
39. |
Ho SS, Dhaliwal SS, Hills AP, et al. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 2012, 12: 704.
|
40. |
Kelley GA, Kelley KS, Pate RR. Exercise and adiposity in overweight and obese children and adolescents: a systematic review with network meta-analysis of randomised trials. BMJ Open, 2019, 9(11): e031220.
|
41. |
Liu X, Li Q, Lu F, et al. Effects of aerobic exercise combined with resistance training on body composition and metabolic health in children and adolescents with overweight or obesity: systematic review and meta-analysis. Front Public Health, 2024, 12: 1409660.
|
42. |
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med, 2014, 44(2): 211-221.
|
43. |
Muscella A, Stefàno E, Lunetti P, et al. The regulation of fat metabolism during aerobic exercise. Biomolecules, 2020, 10(12): 1699.
|
44. |
Liu Y, Wang X, Fang Z. Evaluating the impact of exercise on intermediate disease markers in overweight and obese individuals through a network meta-analysis of randomized controlled trials. Sci Rep, 2024, 14(1): 12137.
|
45. |
Chen C, Zhai J, Hu S, et al. Effects of different physical exercise types on health outcomes of individuals with hypertensive disorders of pregnancy: a prospective randomized controlled clinical study. J Matern Fetal Neonatal Med, 2024, 37(1): 2421278.
|
46. |
Pattyn N, Cornelissen VA, Eshghi SR, et al. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med, 2013, 43(2): 121-133.
|
47. |
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med, 2014, 44(2): 211-221.
|
48. |
Duan Y, Lu G. A randomized controlled trial to determine the impact of resistance training versus aerobic training on the management of FGF-21 and related physiological variables in obese men with Type 2 diabetes mellitus. J Sports Sci Med, 2024, 23(1): 495-503.
|
49. |
Chen T, Lin J, Lin Y, et al. Effects of aerobic exercise and resistance exercise on physical indexes and cardiovascular risk factors in obese and overweight school-age children: a systematic review and meta-analysis. PLoS One, 2021, 16(9): e0257150.
|
50. |
Reisin E, Frohlich ED, Messerli FH, et al. Cardiovascular changes after weight reduction in obesity hypertension. Ann Intern Med, 1983, 98(3): 315-319.
|
51. |
Herbert PN, Bernier DN, Cullinane EM, et al. High-density lipoprotein metabolism in runners and sedentary men. JAMA. 1984, 252(8): 1034-1037.
|
52. |
Rashid S, Genest J. Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring), 2007, 15(12): 2875-2888.
|
53. |
Mohanka M, Irwin M, Heckbert SR, et al. Serum lipoproteins in overweight/obese postmenopausal women: a one-year exercise trial. Med Sci Sports Exerc, 2006, 38(2): 231-239.
|
54. |
Park SK, Park JH, Kwon YC, et al. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci, 2003, 22(3): 129-135.
|
55. |
Smart NA, Downes D, van der Touw T, et al. The effect of exercise training on blood lipids: a systematic review and meta-analysis. Sports Med, 2025, 55(1): 67-78.
|
56. |
Xing S, Xie Y, Zhang Y, et al. Effect of different training modalities on lipid metabolism in patients with type ii diabetes mellitus: a network meta-analysis. Ann Med, 2024, 56(1): 2428432.
|
57. |
Leaf DA. The effect of physical exercise on reverse cholesterol transport. Metabolism, 2003, 52(8): 950-957.
|
58. |
Ferguson MA, Alderson NL, Trost SG, et al. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol (1985), 1998, 85(3): 1169-1174.
|
59. |
Campaigne BN, Fontaine RN, Park MS, et al. Reverse cholesterol transport with acute exercise. Med Sci Sports Exerc. 1993, 25(12): 1346-1351.
|
60. |
Sheikholeslami Vatani D, Ahmadi S, Ahmadi Dehrashid K, et al. Changes in cardiovascular risk factors and inflammatory markers of young, healthy, men after six weeks of moderate or high intensity resistance training. J Sports Med Phys Fitness. 2011, 51(4): 695-700.
|
61. |
Fett CA, Fett WC, Marchini JS. Circuit weight training vs jogging in metabolic risk factors of overweight/obese women. Arq Bras Cardiol, 2009, 93(5): 519-525.
|
62. |
王晶晶, 陈文鹤. 运动减肥对肥胖青少年身体形态、血液生化指标和心率的影响. 上海体育学院学报, 2009, 33(6): 58-61,66.
|
63. |
Hansen PA, Nolte LA, Chen MM, et al. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol (1985), 1998, 85(4): 1218-1222.
|
64. |
O'Gorman DJ, Karlsson HK, McQuaid S, et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia, 2006, 49(12): 2983-2992.
|
65. |
Yaribeygi H, Atkin SL, Simental-Mendía LE, et al. Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol, 2019, 234(8): 12385-12392.
|
66. |
Dores H, Antunes M, Caldeira D, et al. Cardiovascular benefits of resistance exercise: it's time to prescribe. Rev Port Cardiol, 2024, 43(10): 573-582.
|
67. |
麻晓君, 戴霞, 陆丽荣, 等. 有氧运动和抗阻运动对糖调节受损患者空腹血糖及胰岛素抵抗的影响研究. 中国全科医学, 2017, 20(29): 3584-3589.
|
68. |
赵瑞, 陈乐琴, 吴依妮, 等. 有氧运动对超重肥胖儿童执行功能影响的Meta分析. 中国全科医学, 2024, 27(30): 3817-3824.
|
69. |
陈琴, 张培珍. 不同运动方式对高血压的影响. 中华高血压杂志(中英文), 2024, 32(8): 787-795.
|
70. |
MacDonald HV, Johnson BT, Huedo-Medina TB, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc, 2016, 5(10): e003231.
|
71. |
Tinken TM, Thijssen DH, Hopkins N, et al. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension, 2010, 55(2): 312-318.
|
72. |
Olher RR, Rosa TS, Souza LHR, et al. Isometric exercise with large muscle mass improves redox balance and blood pressure in hypertensive adults. Med Sci Sports Exerc, 2020, 52(5): 1187-1195.
|
73. |
Morita H, Abe M, Suematsu Y, et al. Resistance exercise has an antihypertensive effect comparable to that of aerobic exercise in hypertensive patients: a meta-analysis of randomized controlled trials. Hypertens Res, 2025, 48(2): 733-743.
|
74. |
Alemayehu A, Teferi G. Effectiveness of aerobic, resistance, and combined training for hypertensive patients: a randomized controlled trial. Ethiop J Health Sci, 2023, 33(6): 1063-1074.
|
75. |
李智恒. 有氧运动联合抗阻运动对老年原发性高血压患者的血压影响: 一项系统综述和Meta分析//陕西省体育科学学会, 陕西省学生体育协会. 第二届陕西省体育科学大会论文摘要集(专题一). 2024.
|
76. |
刘敏. 有氧运动对肥胖青少年高血压相关致病因素的影响. 上海: 上海体育学院, 2015.
|
77. |
Saco-Ledo G, Valenzuela PL, Ramírez-Jiménez M, et al. Acute aerobic exercise induces short-term reductions in ambulatory blood pressure in patients with hypertension: a systematic review and meta-analysis. Hypertension, 2021, 78(6): 1844-1858.
|