1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2023, 20(4): 203-222.
|
3. |
Pinter M, Scheiner B, Pinato DJ. Immune checkpoint inhibitors in hepatocellular carcinoma: emerging challenges in clinical practice. Lancet Gastroenterol Hepatol, 2023, 8(8): 760-770.
|
4. |
杨鑫, 戴朝六, 徐锋. 肝细胞癌免疫治疗超进展的现状与应对策略. 中国实用外科杂志, 2023, 43(3): 354-360.
|
5. |
Han X, Sun Q, Xu M, et al. Unraveling the complexities of immune checkpoint inhibitors in hepatocellular carcinoma. Semin Liver Dis, 2023, 43(4): 383-401.
|
6. |
Kim CG, Kim KH, Pyo KH, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol, 2019, 30(7): 1104-1113.
|
7. |
Wong DJ, Lee J, Choo SP, et al. Hyperprogressive disease in hepatocellular carcinoma with immune checkpoint inhibitor use: a case series. Immunotherapy, 2019, 11(3): 167-175.
|
8. |
Alkader M, Altaha R, Alkhatib L, et al. Hyperprogressive disease in a metastatic renal cell carcinoma patient after receiving immune checkpoint inhibitors: a case report. Cureus, 2022, 14(10): e30194. doi: 10.7759/cureus.30194.
|
9. |
Kim MJ, Hong SPD, Park Y, et al. Incidence of immunotherapy-related hyperprogressive disease (HPD) across HPD definitions and cancer types in observational studies: a systematic review and meta-analysis. Cancer Med, 2024, 13(3): e6970. doi: 10.1002/cam4.6970.
|
10. |
中国医师协会肝癌专业委员会. 肝细胞癌免疫治疗中国专家共识(2021版). 中华医学杂志, 2021, 101(48): 3921-3931.
|
11. |
Kim CG, Kim C, Yoon SE, et al. Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma. J Hepatol, 2021, 74(2): 350-359.
|
12. |
徐磊, 张万广. 肝癌系统治疗中肿瘤超进展研究现状. 中国实用外科杂志, 2021, 41(3): 284-288.
|
13. |
Ferrara R, Mezquita L, Texier M, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol, 2018, 4(11): 1543-1552.
|
14. |
Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol, 2018, 15(12): 748-762.
|
15. |
Arasanz H, Zuazo M, Bocanegra A, et al. Hyperprogressive disease: main features and key controversies. Int J Mol Sci, 2021, 22(7): 3736. doi: 10.3390/ijms22073736.
|
16. |
Fujita M, Yamaguchi R, Hasegawa T, et al. Classification of primary liver cancer with immunosuppression mechanisms and correlation with genomic alterations. EBioMedicine, 2020, 102659. doi: 10.1016/j.ebiom.2020.102659.
|
17. |
Liu X, Qiao L. Hyperprogressive disease in malignant carcinoma with immune checkpoint inhibitor use: a review. Front Nutr, 2022, 9: 810472. doi: 10.3389/fnut.2022.810472.
|
18. |
Aoki T, Nishida N, Kudo M. Current perspectives on the immunosuppressive niche and role of fibrosis in hepatocellular carcinoma and the development of antitumor immunity. J Histochem Cytochem, 2022, 70(1): 53-81.
|
19. |
Nishida N. Role of oncogenic pathways on the cancer immunosuppressive microenvironment and its clinical implications in hepatocellular carcinoma. Cancers (Basel), 2021, 13(15): 3666. doi: 10.3390/cancers13153666.
|
20. |
Lebossé F, Gudd C, Tunc E, et al. CD8+T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine, 2019, 49: 258-268.
|
21. |
Camelliti S, Le Noci V, Bianchi F, et al. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: what we (don't) know. J Exp Clin Cancer Res, 2020, 39(1): 236.
|
22. |
Yumita S, Ogasawara S, Nakagawa M, et al. Hyperprogressive disease during atezolizumab plus bevacizumab treatment in patients with advanced hepatocellular carcinoma from Japanese real-world practice. BMC Gastroenterol, 2023, 23(1): 101. doi: 10.1186/s12876-023-02731-5.
|
23. |
Qiu XY, Hu DX, Chen WQ, et al. PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1754-1769.
|
24. |
Tanaka T, Koga H, Suzuki H, et al. Anti-PD-L1 antibodies promote cellular proliferation by activating the PD-L1-AXL signal relay in liver cancer cells. Hepatol Int, 2024, 18(3): 984-997.
|
25. |
Wu L, Quan W, Luo Q, et al. Identification of an immune-related prognostic predictor in hepatocellular carcinoma. Front Mol Biosci, 2020, 7: 567950. doi: 10.3389/fmolb.2020.567950.
|
26. |
Azer SA. MDM2-p53 interactions in human hepatocellular carcinoma: what is the role of nutlins and new therapeutic options?. J Clin Med, 2018, 7(4): 64. doi: 10.3390/jcm7040064.
|
27. |
Sun Q, Shen M, Zhu S, et al. Targeting NAD+ metabolism of hepatocellular carcinoma cells by lenvatinib promotes M2 macrophages reverse polarization, suppressing the HCC progression. Hepatol Int, 2023, 17(6): 1444-1460.
|
28. |
Kim KH, Kim CG, Shin EC. Peripheral blood immune cell-based biomarkers in anti-PD-1/PD-L1 therapy. Immune Netw, 2020, 20(1): e8. doi: 10.4110/in.2020.20.e8.
|
29. |
Lo Russo G, Moro M, Sommariva M, et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res, 2019, 25(3): 989-999.
|
30. |
Kanjanapan Y, Day D, Wang L, et al. Hyperprogressive disease in early-phase immunotherapy trials: Clinical predictors and association with immune-related toxicities. Cancer, 2019, 125(8): 1341-1349.
|
31. |
Zhang L, Wu L, Chen Q, et al. Predicting hyperprogressive disease in patients with advanced hepatocellular carcinoma treated with anti-programmed cell death 1 therapy. EClinicalMedicine, 2020, 31: 100673. doi: 10.1016/j.eclinm.2020.100673.
|
32. |
Liu J, Wu Q, Wu S, et al. Investigation on potential biomarkers of hyperprogressive disease (HPD) triggered by immune checkpoint inhibitors (ICIs). Clin Transl Oncol, 2021, 23(9): 1782-1793.
|
33. |
Yildirim HC, Guven DC, Aktepe OH, et al. Blood based biomarkers as predictive factors for hyperprogressive disease. J Clin Med, 2022, 11(17): 5171. doi: 10.3390/jcm11175171.
|
34. |
Tian Y, Xiao H, Yang Y, et al. Crosstalk between 5-methylcytosine and N6-methyladenosine machinery defines disease progression, therapeutic response and pharmacogenomic landscape in hepatocellular carcinoma. Mol Cancer, 2023, 22(1): 5. doi: 10.1186/s12943-022-01706-6.
|
35. |
Maesaka K, Sakamori R, Yamada R, et al. Hyperprogressive disease in patients with unresectable hepatocellular carcinoma receiving atezolizumab plus bevacizumab therapy. Hepatol Res, 2022, 52(3): 298-307.
|
36. |
Choi WM, Kim JY, Choi J, et al. Kinetics of the neutrophil-lymphocyte ratio during PD-1 inhibition as a prognostic factor in advanced hepatocellular carcinoma. Liver Int, 2021, 41(9): 2189-2199.
|
37. |
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev, 2024, 79: 29-38.
|
38. |
Shigefuku R, Yoshikawa K, Tsukimoto M, et al. Hepatocellular carcinoma pseudoprogression involving the main portal vein, right ventricular invasion, and exacerbation of lung metastases in a patient on Atezolizumab plus Bevacizumab. Intern Med, 2023, 62(4): 539-543.
|
39. |
Chen Z, Chen Y, Sun Y, et al. Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multi-modal data. Signal Transduct Target Ther, 2024, 9(1): 222. doi: 10.1038/s41392-024-01932-y.
|
40. |
Li R, Li L, Xu Y, et al. Machine learning meets omics: applications and perspectives. Brief Bioinform, 2022, 23(1): bbab460. doi: 10.1093/bib/bbab460.
|